-
2
-
-
84869875323
-
Synergistic effect of different levels of genomic data for cancer clinical outcome prediction
-
Kim D., Shin H., Song Y.S., Kim J.H. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. J Biomed Inform 2012, 45:1191-1198.
-
(2012)
J Biomed Inform
, vol.45
, pp. 1191-1198
-
-
Kim, D.1
Shin, H.2
Song, Y.S.3
Kim, J.H.4
-
3
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
-
5
-
-
4744364173
-
Cancer classification and prediction using logistic regression with Bayesian gene selection
-
Zhou X., Liu K.Y., Wong S.T.C. Cancer classification and prediction using logistic regression with Bayesian gene selection. J Biomed Inform 2004, 37:249-259.
-
(2004)
J Biomed Inform
, vol.37
, pp. 249-259
-
-
Zhou, X.1
Liu, K.Y.2
Wong, S.T.C.3
-
6
-
-
84865038587
-
Risk prediction for prostate cancer recurrence through regularized estimation with simultaneous adjustment for nonlinear clinical effects
-
Long Q., Moreno C.S., Johnson B.A. Risk prediction for prostate cancer recurrence through regularized estimation with simultaneous adjustment for nonlinear clinical effects. Ann Appl Stat 2011, 5(3):2003-2023.
-
(2011)
Ann Appl Stat
, vol.5
, Issue.3
, pp. 2003-2023
-
-
Long, Q.1
Moreno, C.S.2
Johnson, B.A.3
-
7
-
-
17444386734
-
HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data
-
Wang Y., Makedon F.S., Ford J.C., Pearlman J. HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 2005, 21(8):1530-1537.
-
(2005)
Bioinformatics
, vol.21
, Issue.8
, pp. 1530-1537
-
-
Wang, Y.1
Makedon, F.S.2
Ford, J.C.3
Pearlman, J.4
-
8
-
-
77958165608
-
A Bayesian spatio-temporal method for disease outbreak detection
-
Jiang X., Cooper G.F. A Bayesian spatio-temporal method for disease outbreak detection. J Am Med Inform Assoc 2010, 17(4):462-471.
-
(2010)
J Am Med Inform Assoc
, vol.17
, Issue.4
, pp. 462-471
-
-
Jiang, X.1
Cooper, G.F.2
-
9
-
-
84867299673
-
Prediction of breast cancer using artificial neural networks
-
Saritas I. Prediction of breast cancer using artificial neural networks. J Med Syst 2012, 36:2901-2907.
-
(2012)
J Med Syst
, vol.36
, pp. 2901-2907
-
-
Saritas, I.1
-
10
-
-
33746610159
-
Noise-injected neural networks show promise for use on small-sample expression data
-
Hua J., Lowey J., Xiong Z., Dougherty E.R. Noise-injected neural networks show promise for use on small-sample expression data. BMC Bioinformatics 2006, 7:274.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 274
-
-
Hua, J.1
Lowey, J.2
Xiong, Z.3
Dougherty, E.R.4
-
11
-
-
74849104983
-
A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks
-
Lancashire L.J., Powe D.G., Reis-Filho J.S., Rakha E., Lemetre C., Weigelt B., et al. A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Res Treat 2010, 120:83-93.
-
(2010)
Breast Cancer Res Treat
, vol.120
, pp. 83-93
-
-
Lancashire, L.J.1
Powe, D.G.2
Reis-Filho, J.S.3
Rakha, E.4
Lemetre, C.5
Weigelt, B.6
-
12
-
-
0027678195
-
Regularized image reconstruction using SVD and a neural network method for matrix inversion
-
Steriti R.J., Fiddy M.A. Regularized image reconstruction using SVD and a neural network method for matrix inversion. IEEE Trans Signal Process 1993, 41(10):3074-3077.
-
(1993)
IEEE Trans Signal Process
, vol.41
, Issue.10
, pp. 3074-3077
-
-
Steriti, R.J.1
Fiddy, M.A.2
-
14
-
-
55249120468
-
A weights-directly-determined simple neural network for nonlinear system identification
-
In: Proceedings of IEEE international conference on fuzzy systems
-
Zhang Y, Li W, Yi C, Chen K. A weights-directly-determined simple neural network for nonlinear system identification. In: Proceedings of IEEE international conference on fuzzy systems; 2008. p. 455-60.
-
(2008)
, pp. 455-460
-
-
Zhang, Y.1
Li, W.2
Yi, C.3
Chen, K.4
-
16
-
-
84880324787
-
A hybrid neural network/genetic algorithm applied to breast cancer detection and recurrence
-
Belciug S., Gorunescu F. A hybrid neural network/genetic algorithm applied to breast cancer detection and recurrence. Expert Syst 2013, 30(3):243-254.
-
(2013)
Expert Syst
, vol.30
, Issue.3
, pp. 243-254
-
-
Belciug, S.1
Gorunescu, F.2
-
17
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.B.1
Zhu, Q.Y.2
Siew, C.K.3
-
18
-
-
0003684449
-
-
Springer, New York
-
Hastie T., Tibshirani R., Friedman J. The elements of statistical learning: data mining, inference, and prediction 2009, Springer, New York. 2nd ed.
-
(2009)
The elements of statistical learning: data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
19
-
-
71249130909
-
Bayesian lasso regression
-
Hans C. Bayesian lasso regression. Biometrika 2009, 96(4):835-845.
-
(2009)
Biometrika
, vol.96
, Issue.4
, pp. 835-845
-
-
Hans, C.1
-
20
-
-
0024861871
-
Approximations by superpositions of sigmoidal functions
-
Cybenko G. Approximations by superpositions of sigmoidal functions. Math Control Signals Syst 1989, 2(4):303-314.
-
(1989)
Math Control Signals Syst
, vol.2
, Issue.4
, pp. 303-314
-
-
Cybenko, G.1
-
21
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network: four layers versus three
-
Tamura S., Tateishi M. Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans Neural Networks 1997, 8(2):251-255.
-
(1997)
IEEE Trans Neural Networks
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateishi, M.2
-
22
-
-
49249118837
-
Common nature of learning exemplified by BP and Hopfield neural networks for solving online a system of linear equations
-
In: Proceedings of IEEE international conference on networking, sensing and control
-
Zhang Y, Li Z, Chen K, Cai B. Common nature of learning exemplified by BP and Hopfield neural networks for solving online a system of linear equations. In: Proceedings of IEEE international conference on networking, sensing and control; 2008. p. 832-6.
-
(2008)
, pp. 832-836
-
-
Zhang, Y.1
Li, Z.2
Chen, K.3
Cai, B.4
-
24
-
-
84899477556
-
-
Optimization toolbox user's guide. Version 3.0.3. Natick (MA): The MathWorks Inc.
-
Optimization toolbox user's guide. Version 3.0.3. Natick (MA): The MathWorks Inc.; 2005.
-
(2005)
-
-
-
25
-
-
84859703239
-
Different-level redundancy-resolution and its equivalent relationship analysis for robot manipulators using gradient-descent and Zhang et al.'s neural-dynamic methods
-
Cai B., Zhang Y. Different-level redundancy-resolution and its equivalent relationship analysis for robot manipulators using gradient-descent and Zhang et al.'s neural-dynamic methods. IEEE Trans Ind Electron 2012, 59(8):3146-3155.
-
(2012)
IEEE Trans Ind Electron
, vol.59
, Issue.8
, pp. 3146-3155
-
-
Cai, B.1
Zhang, Y.2
-
26
-
-
77953083553
-
Bi-criteria optimal control of redundant robot manipulators using LVI-based primal-dual neural network
-
Cai B., Zhang Y. Bi-criteria optimal control of redundant robot manipulators using LVI-based primal-dual neural network. Optim Control Appl Methods 2010, 31(3):213-229.
-
(2010)
Optim Control Appl Methods
, vol.31
, Issue.3
, pp. 213-229
-
-
Cai, B.1
Zhang, Y.2
-
27
-
-
3242708140
-
Least angle regression (with discussion)
-
Efron B., Hastie T., Johnstone I., Tibshirani R. Least angle regression (with discussion). Ann Stat 2004, 32(2):407-499.
-
(2004)
Ann Stat
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
28
-
-
84899477071
-
-
http://code.google.com/p/lasso4j/.
-
-
-
-
29
-
-
84899484974
-
-
http://cran.r-project.org/web/packages/glmnet/index.html.
-
-
-
-
30
-
-
84899483751
-
-
http://www.r-project.org/.
-
-
-
-
31
-
-
34247338434
-
A balanced accuracy function for epistasis modeling in imbalanced dataset using multifactor dimensionality reduction
-
Velez D.R., White B.C., Motsinger A.A. A balanced accuracy function for epistasis modeling in imbalanced dataset using multifactor dimensionality reduction. Genet Epidemiol 2007, 31:306-315.
-
(2007)
Genet Epidemiol
, vol.31
, pp. 306-315
-
-
Velez, D.R.1
White, B.C.2
Motsinger, A.A.3
-
32
-
-
0003085879
-
Pattern recognition via linear programming: theory and application to medical diagnosis
-
SIAM Publications, Philadelphia, T.F. Coleman, Y. Li (Eds.)
-
Mangasarian O.L., Setiono R., Wolberg W.H. Pattern recognition via linear programming: theory and application to medical diagnosis. Large-scale numerical optimization 1990, 22-30. SIAM Publications, Philadelphia. T.F. Coleman, Y. Li (Eds.).
-
(1990)
Large-scale numerical optimization
, pp. 22-30
-
-
Mangasarian, O.L.1
Setiono, R.2
Wolberg, W.H.3
-
33
-
-
77956236174
-
Identifying genetic interactions in genome-wide data using Bayesian networks
-
Jiang X., Barmada M.M., Visweswaran S. Identifying genetic interactions in genome-wide data using Bayesian networks. Genet Epidemiol 2010, 34(6):575-581.
-
(2010)
Genet Epidemiol
, vol.34
, Issue.6
, pp. 575-581
-
-
Jiang, X.1
Barmada, M.M.2
Visweswaran, S.3
-
34
-
-
80051486102
-
A Bayesian method for evaluating and discovering disease loci associations
-
Jiang X., Barmada M.M., Cooper G.F., Becich M.J. A Bayesian method for evaluating and discovering disease loci associations. PLoS One 2011, 6(8):e22075.
-
(2011)
PLoS One
, vol.6
, Issue.8
-
-
Jiang, X.1
Barmada, M.M.2
Cooper, G.F.3
Becich, M.J.4
-
35
-
-
79954988537
-
Learning genetic epistasis using Bayesian network scoring criteria
-
Jiang X., Neapolitan R.E., Barmada M.M., Visweswaran S. Learning genetic epistasis using Bayesian network scoring criteria. BMC Bioinformatics 2011, 12(89).
-
(2011)
BMC Bioinformatics
, vol.12
, Issue.89
-
-
Jiang, X.1
Neapolitan, R.E.2
Barmada, M.M.3
Visweswaran, S.4
-
36
-
-
84899480566
-
-
http://www.java.com/en/.
-
-
-
-
37
-
-
84899477478
-
-
http://math.nist.gov/javanumerics/jama/.
-
-
-
-
38
-
-
84899483256
-
-
http://www.eclipse.org/.
-
-
-
-
39
-
-
0001122762
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
In: Proceeding of the international joint conference on artificial intelligence
-
Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceeding of the international joint conference on artificial intelligence; 1995.
-
(1995)
-
-
Kohavi, R.1
-
40
-
-
50949133669
-
LIBLINEAR: a library for large linear classification
-
Software available at
-
Fan R.E., Chang K.W., Hsieh C.J., Wang X.R., Lin C.J. LIBLINEAR: a library for large linear classification. J Mach Learn Res 2008, 9:1871-1874. Software available at
-
(2008)
J Mach Learn Res
, vol.9
, pp. 1871-1874
-
-
Fan, R.E.1
Chang, K.W.2
Hsieh, C.J.3
Wang, X.R.4
Lin, C.J.5
|