메뉴 건너뛰기




Volumn 48, Issue , 2014, Pages 114-121

A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion

Author keywords

Biomedical prediction and classification; Cancer; Least absolute shrinkage and selection operator (LASSO); Matrix pseudo inversion; Neural networks; Single nucleotide polymorphism (SNP)

Indexed keywords

DIAGNOSIS; DISEASES; FORECASTING; ITERATIVE METHODS; LEARNING ALGORITHMS; MEDICAL APPLICATIONS; NEURAL NETWORKS; NUCLEOTIDES; SHRINKAGE; SUPPORT VECTOR MACHINES; ARTIFICIAL INTELLIGENCE; COMPUTER AIDED DIAGNOSIS; LEARNING SYSTEMS;

EID: 84899483858     PISSN: 15320464     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jbi.2013.12.009     Document Type: Article
Times cited : (31)

References (40)
  • 2
    • 84869875323 scopus 로고    scopus 로고
    • Synergistic effect of different levels of genomic data for cancer clinical outcome prediction
    • Kim D., Shin H., Song Y.S., Kim J.H. Synergistic effect of different levels of genomic data for cancer clinical outcome prediction. J Biomed Inform 2012, 45:1191-1198.
    • (2012) J Biomed Inform , vol.45 , pp. 1191-1198
    • Kim, D.1    Shin, H.2    Song, Y.S.3    Kim, J.H.4
  • 3
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 5
    • 4744364173 scopus 로고    scopus 로고
    • Cancer classification and prediction using logistic regression with Bayesian gene selection
    • Zhou X., Liu K.Y., Wong S.T.C. Cancer classification and prediction using logistic regression with Bayesian gene selection. J Biomed Inform 2004, 37:249-259.
    • (2004) J Biomed Inform , vol.37 , pp. 249-259
    • Zhou, X.1    Liu, K.Y.2    Wong, S.T.C.3
  • 6
    • 84865038587 scopus 로고    scopus 로고
    • Risk prediction for prostate cancer recurrence through regularized estimation with simultaneous adjustment for nonlinear clinical effects
    • Long Q., Moreno C.S., Johnson B.A. Risk prediction for prostate cancer recurrence through regularized estimation with simultaneous adjustment for nonlinear clinical effects. Ann Appl Stat 2011, 5(3):2003-2023.
    • (2011) Ann Appl Stat , vol.5 , Issue.3 , pp. 2003-2023
    • Long, Q.1    Moreno, C.S.2    Johnson, B.A.3
  • 7
    • 17444386734 scopus 로고    scopus 로고
    • HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data
    • Wang Y., Makedon F.S., Ford J.C., Pearlman J. HykGene: a hybrid approach for selecting marker genes for phenotype classification using microarray gene expression data. Bioinformatics 2005, 21(8):1530-1537.
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1530-1537
    • Wang, Y.1    Makedon, F.S.2    Ford, J.C.3    Pearlman, J.4
  • 8
    • 77958165608 scopus 로고    scopus 로고
    • A Bayesian spatio-temporal method for disease outbreak detection
    • Jiang X., Cooper G.F. A Bayesian spatio-temporal method for disease outbreak detection. J Am Med Inform Assoc 2010, 17(4):462-471.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.4 , pp. 462-471
    • Jiang, X.1    Cooper, G.F.2
  • 9
    • 84867299673 scopus 로고    scopus 로고
    • Prediction of breast cancer using artificial neural networks
    • Saritas I. Prediction of breast cancer using artificial neural networks. J Med Syst 2012, 36:2901-2907.
    • (2012) J Med Syst , vol.36 , pp. 2901-2907
    • Saritas, I.1
  • 10
    • 33746610159 scopus 로고    scopus 로고
    • Noise-injected neural networks show promise for use on small-sample expression data
    • Hua J., Lowey J., Xiong Z., Dougherty E.R. Noise-injected neural networks show promise for use on small-sample expression data. BMC Bioinformatics 2006, 7:274.
    • (2006) BMC Bioinformatics , vol.7 , pp. 274
    • Hua, J.1    Lowey, J.2    Xiong, Z.3    Dougherty, E.R.4
  • 11
    • 74849104983 scopus 로고    scopus 로고
    • A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks
    • Lancashire L.J., Powe D.G., Reis-Filho J.S., Rakha E., Lemetre C., Weigelt B., et al. A validated gene expression profile for detecting clinical outcome in breast cancer using artificial neural networks. Breast Cancer Res Treat 2010, 120:83-93.
    • (2010) Breast Cancer Res Treat , vol.120 , pp. 83-93
    • Lancashire, L.J.1    Powe, D.G.2    Reis-Filho, J.S.3    Rakha, E.4    Lemetre, C.5    Weigelt, B.6
  • 12
    • 0027678195 scopus 로고
    • Regularized image reconstruction using SVD and a neural network method for matrix inversion
    • Steriti R.J., Fiddy M.A. Regularized image reconstruction using SVD and a neural network method for matrix inversion. IEEE Trans Signal Process 1993, 41(10):3074-3077.
    • (1993) IEEE Trans Signal Process , vol.41 , Issue.10 , pp. 3074-3077
    • Steriti, R.J.1    Fiddy, M.A.2
  • 14
    • 55249120468 scopus 로고    scopus 로고
    • A weights-directly-determined simple neural network for nonlinear system identification
    • In: Proceedings of IEEE international conference on fuzzy systems
    • Zhang Y, Li W, Yi C, Chen K. A weights-directly-determined simple neural network for nonlinear system identification. In: Proceedings of IEEE international conference on fuzzy systems; 2008. p. 455-60.
    • (2008) , pp. 455-460
    • Zhang, Y.1    Li, W.2    Yi, C.3    Chen, K.4
  • 16
    • 84880324787 scopus 로고    scopus 로고
    • A hybrid neural network/genetic algorithm applied to breast cancer detection and recurrence
    • Belciug S., Gorunescu F. A hybrid neural network/genetic algorithm applied to breast cancer detection and recurrence. Expert Syst 2013, 30(3):243-254.
    • (2013) Expert Syst , vol.30 , Issue.3 , pp. 243-254
    • Belciug, S.1    Gorunescu, F.2
  • 17
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.B., Zhu Q.Y., Siew C.K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 19
    • 71249130909 scopus 로고    scopus 로고
    • Bayesian lasso regression
    • Hans C. Bayesian lasso regression. Biometrika 2009, 96(4):835-845.
    • (2009) Biometrika , vol.96 , Issue.4 , pp. 835-845
    • Hans, C.1
  • 20
    • 0024861871 scopus 로고
    • Approximations by superpositions of sigmoidal functions
    • Cybenko G. Approximations by superpositions of sigmoidal functions. Math Control Signals Syst 1989, 2(4):303-314.
    • (1989) Math Control Signals Syst , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 21
    • 0031100287 scopus 로고    scopus 로고
    • Capabilities of a four-layered feedforward neural network: four layers versus three
    • Tamura S., Tateishi M. Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans Neural Networks 1997, 8(2):251-255.
    • (1997) IEEE Trans Neural Networks , vol.8 , Issue.2 , pp. 251-255
    • Tamura, S.1    Tateishi, M.2
  • 22
    • 49249118837 scopus 로고    scopus 로고
    • Common nature of learning exemplified by BP and Hopfield neural networks for solving online a system of linear equations
    • In: Proceedings of IEEE international conference on networking, sensing and control
    • Zhang Y, Li Z, Chen K, Cai B. Common nature of learning exemplified by BP and Hopfield neural networks for solving online a system of linear equations. In: Proceedings of IEEE international conference on networking, sensing and control; 2008. p. 832-6.
    • (2008) , pp. 832-836
    • Zhang, Y.1    Li, Z.2    Chen, K.3    Cai, B.4
  • 24
    • 84899477556 scopus 로고    scopus 로고
    • Optimization toolbox user's guide. Version 3.0.3. Natick (MA): The MathWorks Inc.
    • Optimization toolbox user's guide. Version 3.0.3. Natick (MA): The MathWorks Inc.; 2005.
    • (2005)
  • 25
    • 84859703239 scopus 로고    scopus 로고
    • Different-level redundancy-resolution and its equivalent relationship analysis for robot manipulators using gradient-descent and Zhang et al.'s neural-dynamic methods
    • Cai B., Zhang Y. Different-level redundancy-resolution and its equivalent relationship analysis for robot manipulators using gradient-descent and Zhang et al.'s neural-dynamic methods. IEEE Trans Ind Electron 2012, 59(8):3146-3155.
    • (2012) IEEE Trans Ind Electron , vol.59 , Issue.8 , pp. 3146-3155
    • Cai, B.1    Zhang, Y.2
  • 26
    • 77953083553 scopus 로고    scopus 로고
    • Bi-criteria optimal control of redundant robot manipulators using LVI-based primal-dual neural network
    • Cai B., Zhang Y. Bi-criteria optimal control of redundant robot manipulators using LVI-based primal-dual neural network. Optim Control Appl Methods 2010, 31(3):213-229.
    • (2010) Optim Control Appl Methods , vol.31 , Issue.3 , pp. 213-229
    • Cai, B.1    Zhang, Y.2
  • 27
  • 28
    • 84899477071 scopus 로고    scopus 로고
    • http://code.google.com/p/lasso4j/.
  • 29
    • 84899484974 scopus 로고    scopus 로고
    • http://cran.r-project.org/web/packages/glmnet/index.html.
  • 30
    • 84899483751 scopus 로고    scopus 로고
    • http://www.r-project.org/.
  • 31
    • 34247338434 scopus 로고    scopus 로고
    • A balanced accuracy function for epistasis modeling in imbalanced dataset using multifactor dimensionality reduction
    • Velez D.R., White B.C., Motsinger A.A. A balanced accuracy function for epistasis modeling in imbalanced dataset using multifactor dimensionality reduction. Genet Epidemiol 2007, 31:306-315.
    • (2007) Genet Epidemiol , vol.31 , pp. 306-315
    • Velez, D.R.1    White, B.C.2    Motsinger, A.A.3
  • 32
    • 0003085879 scopus 로고
    • Pattern recognition via linear programming: theory and application to medical diagnosis
    • SIAM Publications, Philadelphia, T.F. Coleman, Y. Li (Eds.)
    • Mangasarian O.L., Setiono R., Wolberg W.H. Pattern recognition via linear programming: theory and application to medical diagnosis. Large-scale numerical optimization 1990, 22-30. SIAM Publications, Philadelphia. T.F. Coleman, Y. Li (Eds.).
    • (1990) Large-scale numerical optimization , pp. 22-30
    • Mangasarian, O.L.1    Setiono, R.2    Wolberg, W.H.3
  • 33
    • 77956236174 scopus 로고    scopus 로고
    • Identifying genetic interactions in genome-wide data using Bayesian networks
    • Jiang X., Barmada M.M., Visweswaran S. Identifying genetic interactions in genome-wide data using Bayesian networks. Genet Epidemiol 2010, 34(6):575-581.
    • (2010) Genet Epidemiol , vol.34 , Issue.6 , pp. 575-581
    • Jiang, X.1    Barmada, M.M.2    Visweswaran, S.3
  • 34
    • 80051486102 scopus 로고    scopus 로고
    • A Bayesian method for evaluating and discovering disease loci associations
    • Jiang X., Barmada M.M., Cooper G.F., Becich M.J. A Bayesian method for evaluating and discovering disease loci associations. PLoS One 2011, 6(8):e22075.
    • (2011) PLoS One , vol.6 , Issue.8
    • Jiang, X.1    Barmada, M.M.2    Cooper, G.F.3    Becich, M.J.4
  • 36
    • 84899480566 scopus 로고    scopus 로고
    • http://www.java.com/en/.
  • 37
    • 84899477478 scopus 로고    scopus 로고
    • http://math.nist.gov/javanumerics/jama/.
  • 38
    • 84899483256 scopus 로고    scopus 로고
    • http://www.eclipse.org/.
  • 39
    • 0001122762 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • In: Proceeding of the international joint conference on artificial intelligence
    • Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceeding of the international joint conference on artificial intelligence; 1995.
    • (1995)
    • Kohavi, R.1
  • 40
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: a library for large linear classification
    • Software available at
    • Fan R.E., Chang K.W., Hsieh C.J., Wang X.R., Lin C.J. LIBLINEAR: a library for large linear classification. J Mach Learn Res 2008, 9:1871-1874. Software available at
    • (2008) J Mach Learn Res , vol.9 , pp. 1871-1874
    • Fan, R.E.1    Chang, K.W.2    Hsieh, C.J.3    Wang, X.R.4    Lin, C.J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.