메뉴 건너뛰기




Volumn , Issue , 2008, Pages 455-460

A weights-directly-determined simple neural network for nonlinear system identification

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; CRYSTALLOGRAPHY; FEEDFORWARD NEURAL NETWORKS; FUZZY LOGIC; FUZZY SYSTEMS; NEURAL NETWORKS; NEURONS; NONLINEAR SYSTEMS; OPTIMAL CONTROL SYSTEMS; POLYNOMIAL APPROXIMATION; PROBABILITY DENSITY FUNCTION;

EID: 55249120468     PISSN: 10987584     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/FUZZY.2008.4630408     Document Type: Conference Paper
Times cited : (35)

References (20)
  • 1
    • 0035427221 scopus 로고    scopus 로고
    • Recurrent neural networks for nonlinear output regulation
    • Y. Zhang and J.Wang, "Recurrent neural networks for nonlinear output regulation," Automatica, vol. 37, pp. 1161-1173, 2001.
    • (2001) Automatica , vol.37 , pp. 1161-1173
    • Zhang, Y.1    Wang, J.2
  • 2
    • 0036738835 scopus 로고    scopus 로고
    • A recurrent neural network for solving Sylvester equation with time-varying coefficients
    • Y. Zhang, D. Jiang, and J. Wang, "A recurrent neural network for solving Sylvester equation with time-varying coefficients," IEEE Transactions on Neural Networks, vol. 13, no. 5, pp. 1053-1063, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.5 , pp. 1053-1063
    • Zhang, Y.1    Jiang, D.2    Wang, J.3
  • 3
    • 28244493362 scopus 로고    scopus 로고
    • Design and analysis of a general recurrent neural network model for time-varying matrix inversion
    • Y. Zhang and S. S. Ge, "Design and analysis of a general recurrent neural network model for time-varying matrix inversion," IEEE Transactions on Neural Networks, vol. 16, no. 6, pp. 1477-1490, 2005.
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.6 , pp. 1477-1490
    • Zhang, Y.1    Ge, S.S.2
  • 4
    • 0027678195 scopus 로고
    • Regularized image reconstructio using SVD and a neural network method for matrix inversion
    • R. J. Steriti and M. A. Fiddy, "Regularized image reconstructio using SVD and a neural network method for matrix inversion," IEEE Transactions on Signal Processing, vol. 41, no. 10, pp. 3074-3077, 1993.
    • (1993) IEEE Transactions on Signal Processing , vol.41 , Issue.10 , pp. 3074-3077
    • Steriti, R.J.1    Fiddy, M.A.2
  • 5
    • 4844228408 scopus 로고    scopus 로고
    • A unified quadratic- programmingbased dynamical system approach to joint torque optimization of physically constrained redundant manipulators
    • Y. Zhang, S. S. Ge, and T. H. Lee, "A unified quadratic- programmingbased dynamical system approach to joint torque optimization of physically constrained redundant manipulators," IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 34, no. 5, pp. 2126-2132, 2004.
    • (2004) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.34 , Issue.5 , pp. 2126-2132
    • Zhang, Y.1    Ge, S.S.2    Lee, T.H.3
  • 6
    • 0033724101 scopus 로고    scopus 로고
    • A BP-neural network predictor model for plastic injection molding process
    • B. H. M. Sadeghi, "A BP-neural network predictor model for plastic injection molding process," Journal of Materials Processing Technology, vol. 103, pp. 411-416, 2000.
    • (2000) Journal of Materials Processing Technology , vol.103 , pp. 411-416
    • Sadeghi, B.H.M.1
  • 7
    • 0036078356 scopus 로고    scopus 로고
    • Neural network weight training by mutation
    • W. M. Jenkins, "Neural network weight training by mutation," Computers and Structures, vol. 84, pp. 2107-2112, 2006.
    • (2006) Computers and Structures , vol.84 , pp. 2107-2112
    • Jenkins, W.M.1
  • 12
    • 6344282813 scopus 로고    scopus 로고
    • Parameter identification of dynamical systems
    • V. S. H. Rao and N. Yadaiah, "Parameter identification of dynamical systems," Chaos, Solitons and Fractals, vol. 23, pp. 1137-1151, 2005.
    • (2005) Chaos, Solitons and Fractals , vol.23 , pp. 1137-1151
    • Rao, V.S.H.1    Yadaiah, N.2
  • 13
    • 33846004799 scopus 로고    scopus 로고
    • System identification of dynamic structure by the multi-branch BPNN
    • H. Li and H. Yang, "System identification of dynamic structure by the multi-branch BPNN," Neurocomputing, vol. 70, pp. 835-841, 2007.
    • (2007) Neurocomputing , vol.70 , pp. 835-841
    • Li, H.1    Yang, H.2
  • 14
    • 33947209499 scopus 로고    scopus 로고
    • A new recurrent neurofuzzy network for identification of dynamic systems
    • M. A. Gonzalez-Olvera and Y. Tang, "A new recurrent neurofuzzy network for identification of dynamic systems," Fuzzy Sets and Systems, vol. 158, pp. 1023-1035, 2007.
    • (2007) Fuzzy Sets and Systems , vol.158 , pp. 1023-1035
    • Gonzalez-Olvera, M.A.1    Tang, Y.2
  • 15
    • 0036707312 scopus 로고    scopus 로고
    • Adaptive time delay neural network structures for nonlinear system identication
    • A. Yazdizadeh and K. Khorasani, "Adaptive time delay neural network structures for nonlinear system identication," Neurocomputing, vol. 47, pp. 207-240, 2002.
    • (2002) Neurocomputing , vol.47 , pp. 207-240
    • Yazdizadeh, A.1    Khorasani, K.2
  • 16
    • 33750961042 scopus 로고    scopus 로고
    • On-line system identification of complex systems using Chebyshev neural networks
    • S. Purwar, I. N. Kar, and A. N. Jha, "On-line system identification of complex systems using Chebyshev neural networks," Applied Soft Computing, vol. 7, pp. 364-372, 2007.
    • (2007) Applied Soft Computing , vol.7 , pp. 364-372
    • Purwar, S.1    Kar, I.N.2    Jha, A.N.3
  • 17
    • 26244441991 scopus 로고    scopus 로고
    • A fast nonlinear model identification method
    • K. Li, J. Peng, and G. W. Irwin, "A fast nonlinear model identification method," IEEE Transactions on Automatic Control, vol. 50, no. 8, pp. 1211-1216, 2005.
    • (2005) IEEE Transactions on Automatic Control , vol.50 , Issue.8 , pp. 1211-1216
    • Li, K.1    Peng, J.2    Irwin, G.W.3
  • 18
    • 0141501530 scopus 로고    scopus 로고
    • Neuro-fuzzy methods for nonlinear system identification
    • R. Babuska and H. Verbruggen, "Neuro-fuzzy methods for nonlinear system identification," Annual Reviews in Control, vol. 27, pp. 73-85, 2003.
    • (2003) Annual Reviews in Control , vol.27 , pp. 73-85
    • Babuska, R.1    Verbruggen, H.2
  • 19
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, "Extreme learning machine: theory and applications", Neurocomputing, vol. 70, pp. 489-501, 2006.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 20
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • G.-B. Huang and L. Chen, "Convex incremental extreme learning machine," Neurocomputing, vol. 70, pp. 3056-3062, 2007.
    • (2007) Neurocomputing , vol.70 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.