메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Learning trajectory preferences for manipulators via iterative improvement

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ITERATIVE METHODS; MANIPULATORS; OPTIMIZATION;

EID: 84898932762     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (104)

References (39)
  • 1
    • 77955809093 scopus 로고    scopus 로고
    • Autonomous helicopter aerobatics through apprenticeship learning
    • P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter aerobatics through apprenticeship learning. IJRR, 29(13), 2010.
    • (2010) IJRR , vol.29 , pp. 13
    • Abbeel, P.1    Coates, A.2    Ng, A.Y.3
  • 2
    • 84868033442 scopus 로고    scopus 로고
    • Keyframe-based learning from demonstration
    • B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz. Keyframe-based learning from demonstration. IJSR, 4(4):343-355, 2012.
    • (2012) IJSR , vol.4 , Issue.4 , pp. 343-355
    • Akgun, B.1    Cakmak, M.2    Jiang, K.3    Thomaz, A.L.4
  • 3
    • 51649093592 scopus 로고    scopus 로고
    • The stochastic motion roadmap: A sampling framework for planning with markov motion uncertainty
    • R. Alterovitz, T. Siméon, and K. Goldberg. The stochastic motion roadmap: A sampling framework for planning with markov motion uncertainty. In RSS, 2007.
    • (2007) RSS
    • Alterovitz, R.1    Siméon, T.2    Goldberg, K.3
  • 4
    • 78650144559 scopus 로고    scopus 로고
    • Lqg-mp: Optimized path planning for robots with motion uncertainty and imperfect state information
    • J. V. D. Berg, P. Abbeel, and K. Goldberg. Lqg-mp: Optimized path planning for robots with motion uncertainty and imperfect state information. In RSS, 2010.
    • (2010) RSS
    • Berg, V.D.1    Abbeel, P.2    Goldberg, K.3
  • 6
    • 84872307432 scopus 로고    scopus 로고
    • Contextual sequence prediction with application to control library optimization
    • D. Dey, T. Y. Liu, M. Hebert, and J. A. Bagnell. Contextual sequence prediction with application to control library optimization. In RSS, 2012.
    • (2012) RSS
    • Dey, D.1    Liu, T.Y.2    Hebert, M.3    Bagnell, J.A.4
  • 8
    • 84898995213 scopus 로고    scopus 로고
    • Generating legible motion
    • A. Dragan and S. Srinivasa. Generating legible motion. In RSS, 2013.
    • (2013) RSS
    • Dragan, A.1    Srinivasa, S.2
  • 9
    • 47649083664 scopus 로고    scopus 로고
    • Toward optimal sampling in the space of paths
    • C. J. Green and A. Kelly. Toward optimal sampling in the space of paths. In ISRR. 2007.
    • (2007) ISRR
    • Green, C.J.1    Kelly, A.2
  • 10
    • 84867125147 scopus 로고    scopus 로고
    • Learning object arrangements in 3d scenes using human context
    • Y. Jiang, M. Lim, and A. Saxena. Learning object arrangements in 3d scenes using human context. In ICML, 2012.
    • (2012) ICML
    • Jiang, Y.1    Lim, M.2    Saxena, A.3
  • 11
    • 84864475487 scopus 로고    scopus 로고
    • Learning to place new objects in a scene
    • Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new objects in a scene. IJRR, 31(9), 2012.
    • (2012) IJRR , vol.31 , Issue.9
    • Jiang, Y.1    Lim, M.2    Zheng, C.3    Saxena, A.4
  • 12
    • 84887388918 scopus 로고    scopus 로고
    • Hallucinated humans as the hidden context for labeling 3d scenes
    • Y. Jiang, H. Koppula, and A. Saxena. Hallucinated humans as the hidden context for labeling 3d scenes. In CVPR, 2013.
    • (2013) CVPR
    • Jiang, Y.1    Koppula, H.2    Saxena, A.3
  • 13
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • T. Joachims. Training linear svms in linear time. In KDD, 2006.
    • (2006) KDD
    • Joachims, T.1
  • 14
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural svms
    • T. Joachims, T. Finley, and C. Yu. Cutting-plane training of structural svms. Mach Learn, 77(1), 2009.
    • (2009) Mach Learn , vol.77 , pp. 1
    • Joachims, T.1    Finley, T.2    Yu, C.3
  • 15
    • 78651498079 scopus 로고    scopus 로고
    • Incremental sampling-based algorithms for optimal motion planning
    • S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for optimal motion planning. In RSS, 2010.
    • (2010) RSS
    • Karaman, S.1    Frazzoli, E.2
  • 17
    • 78049390740 scopus 로고    scopus 로고
    • Policy search for motor primitives in robotics
    • J. Kober and J. Peters. Policy search for motor primitives in robotics. Machine Learning, 84(1), 2011.
    • (2011) Machine Learning , vol.84 , pp. 1
    • Kober, J.1    Peters, J.2
  • 18
    • 84893770737 scopus 로고    scopus 로고
    • Anticipating human activities using object affordances for reactive robotic response
    • H. S. Koppula and A. Saxena. Anticipating human activities using object affordances for reactive robotic response. In RSS, 2013.
    • (2013) RSS
    • Koppula, H.S.1    Saxena, A.2
  • 19
    • 85162558717 scopus 로고    scopus 로고
    • Semantic labeling of 3d point clouds for indoor scenes
    • H. S. Koppula, A. Anand, T. Joachims, and A. Saxena. Semantic labeling of 3d point clouds for indoor scenes. In NIPS, 2011.
    • (2011) NIPS
    • Koppula, H.S.1    Anand, A.2    Joachims, T.3    Saxena, A.4
  • 20
    • 0035327156 scopus 로고    scopus 로고
    • Randomized kinodynamic planning
    • S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. IJRR, 20(5):378-400, 2001.
    • (2001) IJRR , vol.20 , Issue.5 , pp. 378-400
    • Lavalle, S.M.1    Kuffner, J.J.2
  • 21
    • 84893741253 scopus 로고    scopus 로고
    • Deep learning for detecting robotic grasps
    • I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. In RSS, 2013.
    • (2013) RSS
    • Lenz, I.1    Lee, H.2    Saxena, A.3
  • 22
    • 84867123291 scopus 로고    scopus 로고
    • Continuous inverse optimal control with locally optimal examples
    • S. Levine and V. Koltun. Continuous inverse optimal control with locally optimal examples. In ICML, 2012.
    • (2012) ICML
    • Levine, S.1    Koltun, V.2
  • 28
    • 67650957592 scopus 로고    scopus 로고
    • Learning to search: Functional gradient techniques for imitation learning
    • N. Ratliff, D. Silver, and J. A. Bagnell. Learning to search: Functional gradient techniques for imitation learning. Autonomous Robots, 27(1):25-53, 2009.
    • (2009) Autonomous Robots , vol.27 , Issue.1 , pp. 25-53
    • Ratliff, N.1    Silver, D.2    Bagnell, J.A.3
  • 29
    • 85096785591 scopus 로고    scopus 로고
    • Chomp: Gradient optimization techniques for efficient motion planning
    • N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp: Gradient optimization techniques for efficient motion planning. In ICRA, 2009.
    • (2009) ICRA
    • Ratliff, N.1    Zucker, M.2    Bagnell, J.A.3    Srinivasa, S.4
  • 30
    • 38649089443 scopus 로고    scopus 로고
    • Robotic grasping of novel objects using vision
    • A. Saxena, J. Driemeyer, and A.Y. Ng. Robotic grasping of novel objects using vision. IJRR, 27(2), 2008.
    • (2008) IJRR , vol.27 , pp. 2
    • Saxena, A.1    Driemeyer, J.2    Ng, A.Y.3
  • 31
    • 84867138308 scopus 로고    scopus 로고
    • Online structured prediction via coactive learning
    • P. Shivaswamy and T. Joachims. Online structured prediction via coactive learning. In ICML, 2012.
    • (2012) ICML
    • Shivaswamy, P.1    Joachims, T.2
  • 33
    • 51349107362 scopus 로고    scopus 로고
    • Spatial reasoning for human robot interaction
    • E. A. Sisbot, L. F. Marin, and R. Alami. Spatial reasoning for human robot interaction. In IROS, 2007.
    • (2007) IROS
    • Sisbot, E.A.1    Marin, L.F.2    Alami, R.3
  • 36
    • 84877738061 scopus 로고    scopus 로고
    • Efficient high dimensional maximum entropy modeling via symmetric partition functions
    • P. Vernaza and J. A. Bagnell. Efficient high dimensional maximum entropy modeling via symmetric partition functions. In NIPS, 2012.
    • (2012) NIPS
    • Vernaza, P.1    Bagnell, J.A.2
  • 37
    • 84877732154 scopus 로고    scopus 로고
    • A bayesian approach for policy learning from trajectory preference queries
    • A. Wilson, A. Fern, and P. Tadepalli. A bayesian approach for policy learning from trajectory preference queries. In NIPS, 2012.
    • (2012) NIPS
    • Wilson, A.1    Fern, A.2    Tadepalli, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.