메뉴 건너뛰기




Volumn 1, Issue , 2012, Pages 575-583

Efficient high-dimensional maximum entropy modeling via symmetric partition functions

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUOUS SPACES; HIGH DIMENSIONALITY; HUMAN MOTION CAPTURE DATA; LOW DIMENSIONAL STRUCTURE; MAXIMUM ENTROPY MODELING; NATURAL LANGUAGE PROCESSING; PARTITION FUNCTIONS; SEQUENCE ANALYSIS;

EID: 84877738061     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (16)

References (15)
  • 1
    • 0030302511 scopus 로고    scopus 로고
    • Cyclic flows, Markov process and stochastic traffic assignment
    • T. Akamatsu. Cyclic flows, markov process and stochastic traffic assignment. Transportation Research Part B: Methodological, 30(5):369-386, 1996.
    • (1996) Transportation Research Part B: Methodological , vol.30 , Issue.5 , pp. 369-386
    • Akamatsu, T.1
  • 5
    • 84860666940 scopus 로고    scopus 로고
    • A continuous-state version of discrete randomized shortest-paths, with application to path planning
    • S. García-Díez, E. Vandenbussche, and M. Saerens. A continuous-state version of discrete randomized shortest-paths, with application to path planning. In CDC and ECC, 2011.
    • (2011) CDC and ECC
    • García-Díez, S.1    Vandenbussche, E.2    Saerens, M.3
  • 6
    • 11944266539 scopus 로고
    • Information theory and statistical mechanics
    • E.T. Jaynes. Information theory and statistical mechanics. The Physical Review, 106(4):620-630, 1957.
    • (1957) The Physical Review , vol.106 , Issue.4 , pp. 620-630
    • Jaynes, E.T.1
  • 7
    • 67650998865 scopus 로고    scopus 로고
    • Gp-bayesfilters: Bayesian filtering using Gaussian process prediction and observation models
    • J. Ko and D. Fox. Gp-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models. Autonomous Robots, 27(1):75-90, 2009.
    • (2009) Autonomous Robots , vol.27 , Issue.1 , pp. 75-90
    • Ko, J.1    Fox, D.2
  • 9
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.1
  • 11
    • 77951620680 scopus 로고    scopus 로고
    • The sum-over-paths covariance kernel: A novel covariance measure between nodes of a directed graph
    • A. Mantrach, L. Yen, J. Callut, K. Francoisse, M. Shimbo, and M. Saerens. The sum-over-paths covariance kernel: A novel covariance measure between nodes of a directed graph. PAMI, 32(6):1112-1126, 2010.
    • (2010) PAMI , vol.32 , Issue.6 , pp. 1112-1126
    • Mantrach, A.1    Yen, L.2    Callut, J.3    Francoisse, K.4    Shimbo, M.5    Saerens, M.6
  • 13
    • 77955836982 scopus 로고    scopus 로고
    • Learning and planning high-dimensional physical trajectories via structured lagrangians
    • IEEE
    • P. Vernaza, D.D. Lee, and S.J. Yi. Learning and planning high-dimensional physical trajectories via structured lagrangians. In ICRA, pages 846-852. IEEE, 2010.
    • (2010) ICRA , pp. 846-852
    • Vernaza, P.1    Lee, D.D.2    Yi, S.J.3
  • 14
    • 84864069214 scopus 로고    scopus 로고
    • Gaussian process dynamical models
    • J. Wang, D. Fleet, and A. Hertzmann. Gaussian process dynamical models. NIPS, 18:1441, 2006.
    • (2006) NIPS , vol.18 , pp. 1441
    • Wang, J.1    Fleet, D.2    Hertzmann, A.3
  • 15
    • 57749097473 scopus 로고    scopus 로고
    • Maximum entropy inverse reinforcement learning
    • Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse reinforcement learning. In AAAI, pages 1433-1438, 2008.
    • (2008) AAAI , pp. 1433-1438
    • Ziebart, B.D.1    Maas, A.2    Andrew Bagnell, J.3    Dey, A.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.