-
1
-
-
0000308194
-
Gaussian processes for Bayesian classification via hybrid Monte Carlo
-
M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press
-
D. Barber and C. K. I. Williams, "Gaussian processes for Bayesian classification via hybrid Monte Carlo," in Neural Information Processing Systems 9, M. C. Mozer, M. I. Jordan, and T. Petsche, Eds. Cambridge, MA: MIT Press, 1997, pp. 340-346.
-
(1997)
Neural Information Processing Systems 9
, pp. 340-346
-
-
Barber, D.1
Williams, C.K.I.2
-
4
-
-
0027803368
-
Keeping neural networks simple by minimizing the description length of the weights
-
New York
-
G. E. Hinton and D. van Camp, "Keeping neural networks simple by minimizing the description length of the weights," in Proc. 6th Annu. Workshop Comput. Learning Theory. New York, 1993, pp. 5-13.
-
(1993)
Proc. 6th Annu. Workshop Comput. Learning Theory
, pp. 5-13
-
-
Hinton, G.E.1
Van Camp, D.2
-
5
-
-
21744443899
-
Model for hot cracking in low-alloy steel weld metals
-
K. Ichikawa, H. K. D. H. Bhadeshia, and D. J. C. MacKay, "Model for hot cracking in low-alloy steel weld metals," Sci. Technol. Welding Joining, vol. 1, pp. 43-50, 1996.
-
(1996)
Sci. Technol. Welding Joining
, vol.1
, pp. 43-50
-
-
Ichikawa, K.1
Bhadeshia, H.K.D.H.2
MacKay, D.J.C.3
-
6
-
-
0006489058
-
Computing upper and lower bounds on likelihoods in intractable networks
-
Morgan Kaufman
-
T. S. Jaakkola and M. I. Jordan, "Computing upper and lower bounds on likelihoods in intractable networks," in Proc. 12th Conf. Uncertainty AI: Morgan Kaufman, 1996.
-
(1996)
Proc. 12th Conf. Uncertainty AI
-
-
Jaakkola, T.S.1
Jordan, M.I.2
-
7
-
-
0042685161
-
Bayesian parameter estimation via variational methods
-
_, "Bayesian parameter estimation via variational methods," Statist. Comput., vol. 10, no. 1, pp. 25-37, 2000.
-
(2000)
Statist. Comput.
, vol.10
, Issue.1
, pp. 25-37
-
-
-
8
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
S. L. Lauritzen and D. J. Spiegelhalter, "Local computations with probabilities on graphical structures and their application to expert systems," J. Roy. Statist. Soc. B, pp. 157-224, 1988.
-
(1988)
J. Roy. Statist. Soc. B
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
9
-
-
0000234257
-
The evidence framework applied to classification networks
-
D. J. C. MacKay, "The evidence framework applied to classification networks," Neural Comput., vol. 4, no. 5, pp. 698-714, 1992a.
-
(1992)
Neural Comput.
, vol.4
, Issue.5
, pp. 698-714
-
-
MacKay, D.J.C.1
-
10
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
_, "A practical Bayesian framework for backpropagation networks," Neural Comput., vol. 4, no. 3, pp. 448-472, 1992b.
-
(1992)
Neural Comput.
, vol.4
, Issue.3
, pp. 448-472
-
-
-
11
-
-
0029272806
-
Free energy minimization algorithm for decoding and cryptanalysis
-
_, "Free energy minimization algorithm for decoding and cryptanalysis," Electron. Lett., vol. 31, no. 6, pp. 446-447, 1995a.
-
(1995)
Electron. Lett.
, vol.31
, Issue.6
, pp. 446-447
-
-
-
12
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
-
_, "Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks," Network: Comput. Neural Syst., vol. 6, pp. 469-505, 1995b.
-
(1995)
Network: Comput. Neural Syst.
, vol.6
, pp. 469-505
-
-
-
13
-
-
0003611509
-
-
Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada
-
R. M. Neal, "Bayesian learning for neural networks," Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, 1995.
-
(1995)
Bayesian Learning for Neural Networks
-
-
Neal, R.M.1
-
14
-
-
0004220749
-
Monte Carlo implementation of Gaussian process models for Bayesian regression and classification
-
Dept. Comput. Sci., Univ. Toronto
-
_, "Monte Carlo implementation of Gaussian process models for Bayesian regression and classification," Dept. Comput. Sci., Univ. Toronto, Tech. Rep. CRG-TR-97-2, 1997.
-
(1997)
Tech. Rep. CRG-TR-97-2
-
-
-
15
-
-
0040314212
-
Flexible nonlinear approaches to classification
-
V. Cherkassky, J. H. Friedman, and H. Wechsler, Eds. New York: Springer-Verlag
-
B. D. Ripley, "Flexible nonlinear approaches to classification," in From Statistics to Neural Networks. Theory and Pattern Recognition Applications, V. Cherkassky, J. H. Friedman, and H. Wechsler, Eds. New York: Springer-Verlag, 1994.
-
(1994)
From Statistics to Neural Networks. Theory and Pattern Recognition Applications
-
-
Ripley, B.D.1
-
17
-
-
0041016840
-
Bayesian numerical analysis
-
W. T. Grandy Jr. and P. Milonni, Eds. Cambridge, U.K.: Cambridge Univ. Press.
-
J. Skilling, "Bayesian numerical analysis," in Physics and Probability, W. T. Grandy Jr. and P. Milonni, Eds. Cambridge, U.K.: Cambridge Univ. Press., 1993.
-
(1993)
Physics and Probability
-
-
Skilling, J.1
-
19
-
-
0000704059
-
Computation with infinite neural networks
-
_, "Computation with infinite neural networks," Neural Comput., vol. 10, no. 5, pp. 1203-1216, 1998.
-
(1998)
Neural Comput.
, vol.10
, Issue.5
, pp. 1203-1216
-
-
-
20
-
-
0002295913
-
Gaussian processes for regression
-
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press
-
C. K. Williams and C. E. Rasmussen, "Gaussian processes for regression," in Advances in Neural Information Processing Systems 8, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems 8
-
-
Williams, C.K.1
Rasmussen, C.E.2
|