-
1
-
-
84858713046
-
Data-driven calibration of linear estimators with minimal penalties
-
S. Arlot and F. Bach. Data-driven calibration of linear estimators with minimal penalties. In Adv. NIPS, 2009.
-
(2009)
Adv. NIPS
-
-
Arlot, S.1
Bach, F.2
-
2
-
-
80555158386
-
Self-concordant analysis for logistic regression
-
F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4: 384-414, 2010.
-
(2010)
Electronic Journal of Statistics
, vol.4
, pp. 384-414
-
-
Bach, F.1
-
3
-
-
31844446681
-
Predictive low-rank decomposition for kernel methods
-
F. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In Proc. ICML, 2005.
-
(2005)
Proc. ICML
-
-
Bach, F.1
Jordan, M.I.2
-
4
-
-
51349158367
-
Kernel projection machine: A new tool for pattern recognition
-
G. Blanchard, P. Massart, R. Vert, and L. Zwald. Kernel projection machine: a new tool for pattern recognition. In Adv. NIPS, 2004.
-
(2004)
Adv. NIPS
-
-
Blanchard, G.1
Massart, P.2
Vert, R.3
Zwald, L.4
-
5
-
-
48849115978
-
Statistical performance of support vector machines
-
G. Blanchard, O. Bousquet, and P. Massart. Statistical performance of support vector machines. The Annals of Statistics, 36(2): 489-531, 2008.
-
(2008)
The Annals of Statistics
, vol.36
, Issue.2
, pp. 489-531
-
-
Blanchard, G.1
Bousquet, O.2
Massart, P.3
-
6
-
-
25444522689
-
Fast kernel classifiers with online and active learning
-
A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active learning. Journal of Machine Learning Research, 6: 1579-1619, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1579-1619
-
-
Bordes, A.1
Ertekin, S.2
Weston, J.3
Bottou, L.4
-
7
-
-
84866726489
-
An improved approximation algorithm for the column subset selection problem
-
C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation algorithm for the column subset selection problem. In Proc. SODA, 2009.
-
(2009)
Proc. SODA
-
-
Boutsidis, C.1
Mahoney, M.W.2
Drineas, P.3
-
8
-
-
34548537866
-
Optimal rates for the regularized least-squares algorithm
-
A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm. Found. Comput. Math., 7(3): 331-368, 2007.
-
(2007)
Found. Comput. Math.
, vol.7
, Issue.3
, pp. 331-368
-
-
Caponnetto, A.1
De Vito, E.2
-
9
-
-
34247849152
-
Training a support vector machine in the primal
-
O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5): 1155-1178, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.5
, pp. 1155-1178
-
-
Chapelle, O.1
-
10
-
-
84859452391
-
On the impact of kernel approximation on learning accuracy
-
C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation on learning accuracy. In Proc. AISTATS, 2010.
-
(2010)
Proc. AISTATS
-
-
Cortes, C.1
Mohri, M.2
Talwalkar, A.3
-
11
-
-
84864063405
-
The forgetron: A kernel-based perceptron on a fixed budget
-
O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a fixed budget. In Adv. NIPS, 2005.
-
(2005)
Adv. NIPS
-
-
Dekel, O.1
Shalev-Shwartz, S.2
Singer, Y.3
-
13
-
-
84873435224
-
Fast approximation of matrix coherence and statistical leverage
-
P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. Fast approximation of matrix coherence and statistical leverage. Journal of Machine Learning Research, 13: 3475-3506, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 3475-3506
-
-
Drineas, P.1
Magdon-Ismail, M.2
Mahoney, M.W.3
Woodruff, D.P.4
-
14
-
-
0041494125
-
Efficient SVM training using low-rank kernel representations
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representations. Journal of Machine Learning Research, 2: 243-264, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
20
-
-
84947403595
-
Probability inequalities for sums of bounded random variables
-
W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301): 13-30, 1963.
-
(1963)
Journal of the American Statistical Association
, vol.58
, Issue.301
, pp. 13-30
-
-
Hoeffding, W.1
-
21
-
-
84859405394
-
An analysis of random design linear regression
-
D. Hsu, S. M. Kakade, and T. Zhang. An analysis of random design linear regression. In Proc. COLT, 2011.
-
(2011)
Proc. COLT
-
-
Hsu, D.1
Kakade, S.M.2
Zhang, T.3
-
22
-
-
84859392380
-
Tail inequalities for sums of random matrices that depend on the intrinsic dimension
-
D. Hsu, S. M. Kakade, and T. Zhang. Tail inequalities for sums of random matrices that depend on the intrinsic dimension. Electronic Communications in Probability, 17(14): 1-13, 2012.
-
(2012)
Electronic Communications in Probability
, vol.17
, Issue.14
, pp. 1-13
-
-
Hsu, D.1
Kakade, S.M.2
Zhang, T.3
-
23
-
-
84898043174
-
Improved bound for the nyström's method and its application to kernel classification
-
arXiv
-
R. Jin, T. Yang, M. Mahdavi, Y.-F. Li, and Z.-H. Zhou. Improved bound for the Nyström's method and its application to kernel classification. Technical Report 1111.2262v2, arXiv, 2001.
-
(2001)
Technical Report 1111.2262v2
-
-
Jin, R.1
Yang, T.2
Mahdavi, M.3
Li, Y.-F.4
Zhou, Z.-H.5
-
24
-
-
69549111057
-
Cutting-plane training of structural SVMs
-
T. Joachims, T. Finley, and C.-N. Yu. Cutting-plane training of structural SVMs. Machine Learning, 77(1): 27-59, 2009.
-
(2009)
Machine Learning
, vol.77
, Issue.1
, pp. 27-59
-
-
Joachims, T.1
Finley, T.2
Yu, C.-N.3
-
28
-
-
85156260506
-
Fast sparse Gaussian process methods: The informative vector machine
-
N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods: The informative vector machine. In Adv. NIPS, 2002.
-
(2002)
Adv. NIPS
-
-
Lawrence, N.D.1
Seeger, M.2
Herbrich, R.3
-
31
-
-
78249289201
-
Compressed least-squares regression
-
O. A. Maillard and R. Munos. Compressed least-squares regression. In Adv. NIPS, 2009.
-
(2009)
Adv. NIPS
-
-
Maillard, O.A.1
Munos, R.2
-
32
-
-
56449097022
-
The projectron: A bounded kernel-based perceptron
-
F. Orabona, J. Keshet, and B. Caputo. The Projectron: a bounded kernel-based perceptron. In Proc. ICML, 2008.
-
(2008)
Proc. ICML
-
-
Orabona, F.1
Keshet, J.2
Caputo, B.3
-
33
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press
-
J. C. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods, pages 185-208. MIT Press, 1999.
-
(1999)
Advances in Kernel Methods
, pp. 185-208
-
-
Platt, J.C.1
-
34
-
-
85161980201
-
Random features for large-scale kernel machines
-
A. Rahimi and B. Recht. Random features for large-scale kernel machines. Adv. NIPS, 2007.
-
(2007)
Adv. NIPS
-
-
Rahimi, A.1
Recht, B.2
-
37
-
-
85161993206
-
Tight sample complexity of large-margin learning
-
S. Sabato, N. Srebro, and N. Tishby. Tight sample complexity of large-margin learning. In Adv. NIPS, 2010.
-
(2010)
Adv. NIPS
-
-
Sabato, S.1
Srebro, N.2
Tishby, N.3
-
42
-
-
0002493574
-
Sparse greedy matrix approximation for machine learning
-
A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning. In Proc. ICML, 2000.
-
(2000)
Proc. ICML
-
-
Smola, A.J.1
Schölkopf, B.2
-
43
-
-
0000935894
-
Spline smoothing and optimal rates of convergence in nonparametric regression models
-
P. Speckman. Spline smoothing and optimal rates of convergence in nonparametric regression models. The Annals of Statistics, 13(3): 970-983, 1985.
-
(1985)
The Annals of Statistics
, vol.13
, Issue.3
, pp. 970-983
-
-
Speckman, P.1
-
44
-
-
84898072914
-
Optimal rates for regularized least squares regression
-
I. Steinwart, D. Hush, C. Scovel, et al. Optimal rates for regularized least squares regression. In Proc. COLT, 2009.
-
(2009)
Proc. COLT
-
-
Steinwart, I.1
Hush, D.2
Scovel, C.3
-
46
-
-
84876688536
-
Online learning as stochastic approximation of regularization paths
-
arXiv
-
P. Tarrès and Y. Yao. Online learning as stochastic approximation of regularization paths. Technical Report 1103.5538, arXiv, 2011.
-
(2011)
Technical Report 1103.5538
-
-
Tarrès, P.1
Yao, Y.2
-
47
-
-
80052645998
-
Improved analysis of the subsampled randomized hadamard transform
-
J. A. Tropp. Improved analysis of the subsampled randomized Hadamard transform. Adv. Adapt. Data Anal., 13(1-2): 115-126, 2011.
-
(2011)
Adv. Adapt. Data Anal.
, vol.13
, Issue.1-2
, pp. 115-126
-
-
Tropp, J.A.1
-
48
-
-
84864315555
-
User-friendly tail bounds for sums of random matrices
-
J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4): 389-434, 2012.
-
(2012)
Foundations of Computational Mathematics
, vol.12
, Issue.4
, pp. 389-434
-
-
Tropp, J.A.1
-
50
-
-
84869463516
-
Breaking the curse of kernelization: Budgeted stochastic gradient descent for large-scale SVM training
-
Z. Wang, K. Crammer, and S. Vucetic. Breaking the curse of kernelization: Budgeted stochastic gradient descent for large-scale SVM training. Journal of Machine Learning Research, 13: 3103-3131, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 3103-3131
-
-
Wang, Z.1
Crammer, K.2
Vucetic, S.3
-
51
-
-
84899010839
-
Using the nyström method to speed up kernel machines
-
C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Adv. NIPS, 2001.
-
(2001)
Adv. NIPS
-
-
Williams, C.1
Seeger, M.2
-
52
-
-
84877740547
-
Nyström method vs. Random fourier features: A theoretical and empirical comparison
-
T. Yang, Y.-F. Li, M. Mahdavi, R. Jin, and Z.-H. Zhou. Nyström method vs. random fourier features: A theoretical and empirical comparison. In Adv. NIPS, 2012.
-
(2012)
Adv. NIPS
-
-
Yang, T.1
Li, Y.-F.2
Mahdavi, M.3
Jin, R.4
Zhou, Z.-H.5
-
53
-
-
33846580425
-
Local features and kernels for classification of texture and object categories: A comprehensive study
-
J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73(2): 213-238, 2007.
-
(2007)
International Journal of Computer Vision
, vol.73
, Issue.2
, pp. 213-238
-
-
Zhang, J.1
Marszałek, M.2
Lazebnik, S.3
Schmid, C.4
|