-
1
-
-
34247197035
-
Fast rates for support vector machines using Gaussian kernels
-
I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian kernels. Annals of Statistics, 35(2):575-607, 2007.
-
(2007)
Annals of Statistics
, vol.35
, Issue.2
, pp. 575-607
-
-
Steinwart, I.1
Scovel, C.2
-
2
-
-
77956555966
-
On the interaction between norm and dimensionality: Multiple regimes in learning
-
P. Liang and N. Srebro. On the interaction between norm and dimensionality: Multiple regimes in learning. In ICML, 2010.
-
(2010)
ICML
-
-
Liang, P.1
Srebro, N.2
-
3
-
-
14344249889
-
Feature selection, l1 vs. l2 regularization, and rotational invariance
-
A.Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In ICML, 2004.
-
(2004)
ICML
-
-
Ng, A.Y.1
-
4
-
-
0031698444
-
Strong minimax lower bounds for learning
-
A. Antos and G. Lugosi. Strong minimax lower bounds for learning. Mach. Learn., 30(1):31-56, 1998.
-
(1998)
Mach. Learn.
, vol.30
, Issue.1
, pp. 31-56
-
-
Antos, A.1
Lugosi, G.2
-
5
-
-
84918685348
-
A general lower bound on the number of examples needed for learning
-
August
-
A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound on the number of examples needed for learning. In Proceedings of the First Anuual Workshop on Computational Learning Theory, pages 139-154, August 1988.
-
(1988)
Proceedings of the First Anuual Workshop on Computational Learning Theory
, pp. 139-154
-
-
Ehrenfeucht, A.1
Haussler, D.2
Kearns, M.3
Valiant, L.4
-
6
-
-
0031620209
-
Improved lower bounds for learning from noisy examples: An informationtheoretic approach
-
C. Gentile and D.P. Helmbold. Improved lower bounds for learning from noisy examples: an informationtheoretic approach. In COLT, pages 104-115, 1998.
-
(1998)
COLT
, pp. 104-115
-
-
Gentile, C.1
Helmbold, D.P.2
-
8
-
-
0026414013
-
Learnability with respect to fixed distributions
-
September
-
Gyora M. Benedek and Alon Itai. Learnability with respect to fixed distributions. Theoretical Computer Science, 86(2):377-389, September 1991.
-
(1991)
Theoretical Computer Science
, vol.86
, Issue.2
, pp. 377-389
-
-
Benedek, G.M.1
Itai, A.2
-
10
-
-
2342631022
-
Distribution-dependent vapnik-chervonenkis bounds
-
London, UK, Springer-Verlag
-
N. Vayatis and R. Azencott. Distribution-dependent vapnik-chervonenkis bounds. In EuroCOLT '99, pages 230-240, London, UK, 1999. Springer-Verlag.
-
(1999)
EuroCOLT '99
, pp. 230-240
-
-
Vayatis, N.1
Azencott, R.2
-
13
-
-
84943261848
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
Springer, Berlin
-
P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. In COLT 2001, volume 2111, pages 224-240. Springer, Berlin, 2001.
-
(2001)
COLT 2001
, vol.2111
, pp. 224-240
-
-
Bartlett, P.L.1
Mendelson, S.2
-
15
-
-
25944458218
-
Generalization bounds via eigenvalues of the gram matrix
-
B. Schölkopf, J. Shawe-Taylor, A. J. Smola, and R.C.Williamson. Generalization bounds via eigenvalues of the gram matrix. Technical Report NC2-TR-1999-035, NeuroCOLT2, 1999.
-
(1999)
Technical Report NC2-TR-1999-035, NeuroCOLT2
-
-
Schölkopf, B.1
Shawe-Taylor, J.2
Smola, A.J.3
Williamson, R.C.4
-
20
-
-
41049114969
-
The littlewoodofford problem and invertibility of random matrices
-
M. Rudelson and R. Vershynin. The littlewoodofford problem and invertibility of random matrices. Advances in Mathematics, 218(2):600-633, 2008.
-
(2008)
Advances in Mathematics
, vol.218
, Issue.2
, pp. 600-633
-
-
Rudelson, M.1
Vershynin, R.2
-
21
-
-
0347067948
-
Covering number bounds of certain regularized linear function classes
-
T. Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527-550, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 527-550
-
-
Zhang, T.1
-
22
-
-
84972549296
-
Norms of random matrices
-
G. Bennett, V. Goodman, and C. M. Newman. Norms of random matrices. Pacific J. Math., 59(2):359-365, 1975.
-
(1975)
Pacific J. Math.
, vol.59
, Issue.2
, pp. 359-365
-
-
Bennett, G.1
Goodman, V.2
Newman, C.M.3
-
23
-
-
0039406166
-
Ball, haagerup, and distribution functions
-
Complex analysis, operators, and related topics
-
F.L. Nazarov and A. Podkorytov. Ball, haagerup, and distribution functions. Operator Theory: Advances and Applications, 113 (Complex analysis, operators, and related topics):247-267, 2000.
-
(2000)
Operator Theory: Advances and Applications
, vol.113
, pp. 247-267
-
-
Nazarov, F.L.1
Podkorytov, A.2
|