메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Tight sample complexity of large-margin learning

Author keywords

[No Author keywords available]

Indexed keywords

COVARIANCE MATRICES; LARGE MARGINS; LARGE-MARGIN LEARNING; REGULARISATION; SAMPLE COMPLEXITY; SIMPLE++; SOURCE DISTRIBUTION; SPECTRA'S; SUB-GAUSSIANS; UPPER AND LOWER BOUNDS;

EID: 85161993206     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (24)
  • 1
    • 34247197035 scopus 로고    scopus 로고
    • Fast rates for support vector machines using Gaussian kernels
    • I. Steinwart and C. Scovel. Fast rates for support vector machines using Gaussian kernels. Annals of Statistics, 35(2):575-607, 2007.
    • (2007) Annals of Statistics , vol.35 , Issue.2 , pp. 575-607
    • Steinwart, I.1    Scovel, C.2
  • 2
    • 77956555966 scopus 로고    scopus 로고
    • On the interaction between norm and dimensionality: Multiple regimes in learning
    • P. Liang and N. Srebro. On the interaction between norm and dimensionality: Multiple regimes in learning. In ICML, 2010.
    • (2010) ICML
    • Liang, P.1    Srebro, N.2
  • 3
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, l1 vs. l2 regularization, and rotational invariance
    • A.Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance. In ICML, 2004.
    • (2004) ICML
    • Ng, A.Y.1
  • 4
    • 0031698444 scopus 로고    scopus 로고
    • Strong minimax lower bounds for learning
    • A. Antos and G. Lugosi. Strong minimax lower bounds for learning. Mach. Learn., 30(1):31-56, 1998.
    • (1998) Mach. Learn. , vol.30 , Issue.1 , pp. 31-56
    • Antos, A.1    Lugosi, G.2
  • 6
    • 0031620209 scopus 로고    scopus 로고
    • Improved lower bounds for learning from noisy examples: An informationtheoretic approach
    • C. Gentile and D.P. Helmbold. Improved lower bounds for learning from noisy examples: an informationtheoretic approach. In COLT, pages 104-115, 1998.
    • (1998) COLT , pp. 104-115
    • Gentile, C.1    Helmbold, D.P.2
  • 8
    • 0026414013 scopus 로고
    • Learnability with respect to fixed distributions
    • September
    • Gyora M. Benedek and Alon Itai. Learnability with respect to fixed distributions. Theoretical Computer Science, 86(2):377-389, September 1991.
    • (1991) Theoretical Computer Science , vol.86 , Issue.2 , pp. 377-389
    • Benedek, G.M.1    Itai, A.2
  • 10
    • 2342631022 scopus 로고    scopus 로고
    • Distribution-dependent vapnik-chervonenkis bounds
    • London, UK, Springer-Verlag
    • N. Vayatis and R. Azencott. Distribution-dependent vapnik-chervonenkis bounds. In EuroCOLT '99, pages 230-240, London, UK, 1999. Springer-Verlag.
    • (1999) EuroCOLT '99 , pp. 230-240
    • Vayatis, N.1    Azencott, R.2
  • 13
    • 84943261848 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • Springer, Berlin
    • P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. In COLT 2001, volume 2111, pages 224-240. Springer, Berlin, 2001.
    • (2001) COLT 2001 , vol.2111 , pp. 224-240
    • Bartlett, P.L.1    Mendelson, S.2
  • 20
    • 41049114969 scopus 로고    scopus 로고
    • The littlewoodofford problem and invertibility of random matrices
    • M. Rudelson and R. Vershynin. The littlewoodofford problem and invertibility of random matrices. Advances in Mathematics, 218(2):600-633, 2008.
    • (2008) Advances in Mathematics , vol.218 , Issue.2 , pp. 600-633
    • Rudelson, M.1    Vershynin, R.2
  • 21
    • 0347067948 scopus 로고    scopus 로고
    • Covering number bounds of certain regularized linear function classes
    • T. Zhang. Covering number bounds of certain regularized linear function classes. Journal of Machine Learning Research, 2:527-550, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 527-550
    • Zhang, T.1
  • 23
    • 0039406166 scopus 로고    scopus 로고
    • Ball, haagerup, and distribution functions
    • Complex analysis, operators, and related topics
    • F.L. Nazarov and A. Podkorytov. Ball, haagerup, and distribution functions. Operator Theory: Advances and Applications, 113 (Complex analysis, operators, and related topics):247-267, 2000.
    • (2000) Operator Theory: Advances and Applications , vol.113 , pp. 247-267
    • Nazarov, F.L.1    Podkorytov, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.