-
1
-
-
84902430501
-
Industrial applications of biocatalysis: an overview
-
(eds Carreira, E. M. and Yamamoto, H.), Elsevier, Amsterdam
-
Wells, A., Industrial applications of biocatalysis: an overview. In Industrial Applications of Asymmetric Synthesis (eds Carreira, E. M. and Yamamoto, H.), Elsevier, Amsterdam, 2012, pp. 253-287.
-
(2012)
Industrial Applications of Asymmetric Synthesis
, pp. 253-287
-
-
Wells, A.1
-
2
-
-
84907037937
-
Some new developments in reductive amination with cofactor regeneration
-
Bommarius, A. S., Drauz, K., Hummel, W., Kula, M. R. and Wandrey, C., Some new developments in reductive amination with cofactor regeneration. Biocatal. Biotransform., 1994, 10, 37-47.
-
(1994)
Biocatal. Biotransform
, vol.10
, pp. 37-47
-
-
Bommarius, A.S.1
Drauz, K.2
Hummel, W.3
Kula, M.R.4
Wandrey, C.5
-
3
-
-
84861458491
-
Recent trends in biocatalysis engineering
-
Illanes, A., Cauerhff, A., Wilson, L. and Castro, G. R., Recent trends in biocatalysis engineering. Bioresour. Technol., 2012, 115, 48-57.
-
(2012)
Bioresour. Technol
, vol.115
, pp. 48-57
-
-
Illanes, A.1
Cauerhff, A.2
Wilson, L.3
Castro, G.R.4
-
4
-
-
0037950624
-
The first highly enantioselective homogeneously catalyzed asymmetric reductive amination: synthesis of alpha-N-benzylamino acids
-
Kadyrov, R., Riermeier, T. H., Dingerdissen, U., Tararov, V. and Börner, A., The first highly enantioselective homogeneously catalyzed asymmetric reductive amination: synthesis of alpha-Nbenzylamino acids. J. Org. Chem., 2003, 68, 4067-4070.
-
(2003)
J. Org. Chem
, vol.68
, pp. 4067-4070
-
-
Kadyrov, R.1
Riermeier, T.H.2
Dingerdissen, U.3
Tararov, V.4
Börner, A.5
-
5
-
-
0004173474
-
-
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
-
Liese, A., Seelbach, K. and Wandrey, C., Industrial Biotransformations, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006, pp. 147-513.
-
(2006)
Industrial Biotransformations
, pp. 147-513
-
-
Liese, A.1
Seelbach, K.2
Wandrey, C.3
-
6
-
-
0346964468
-
Biocatalysts in synthetic organic chemistry
-
Roberts, S. M., Biocatalysts in synthetic organic chemistry. Tetrahedron, 2004, 60, 499-500.
-
(2004)
Tetrahedron
, vol.60
, pp. 499-500
-
-
Roberts, S.M.1
-
7
-
-
0021449680
-
Biocatalysis in natural products chemistry
-
Sariaslani, F. S. and Rosazza, J. P., Biocatalysis in natural products chemistry. Enzyme Microb. Technol., 1984, 6, 242-253.
-
(1984)
Enzyme Microb. Technol
, vol.6
, pp. 242-253
-
-
Sariaslani, F.S.1
Rosazza, J.P.2
-
8
-
-
0035843170
-
Industrial biocatalysis today and tomorrow
-
Schmid, A., Dordick, J. S., Hauer, B., Kiener, A., Wubbolts, M. and Witholt, B., Industrial biocatalysis today and tomorrow. Nature, 2001, 409, 258-268.
-
(2001)
Nature
, vol.409
, pp. 258-268
-
-
Schmid, A.1
Dordick, J.S.2
Hauer, B.3
Kiener, A.4
Wubbolts, M.5
Witholt, B.6
-
9
-
-
0037436563
-
Dispelling the myths - biocatalysis in industrial synthesis
-
Schoemaker, H. E., Mink, D. and Wubbolts, M. G., Dispelling the myths - biocatalysis in industrial synthesis. Science, 2003, 299, 1694-1697.
-
(2003)
Science
, vol.299
, pp. 1694-1697
-
-
Schoemaker, H.E.1
Mink, D.2
Wubbolts, M.G.3
-
10
-
-
0035313673
-
Industrial biocatalysis
-
Zaks, A., Industrial biocatalysis. Curr. Opin. Chem. Biol., 2001, 5, 130-136.
-
(2001)
Curr. Opin. Chem. Biol
, vol.5
, pp. 130-136
-
-
Zaks, A.1
-
11
-
-
84870921311
-
The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC)
-
Meyer, H. P., Eichhorn, E., Hanlon, S., Lütz, S., Schürmann, M., Wohlgemuth, R. and Coppolecchia, R., The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catal. Sci. Technol., 2013, 3, 29-40.
-
(2013)
Catal. Sci. Technol
, vol.3
, pp. 29-40
-
-
Meyer, H.P.1
Eichhorn, E.2
Hanlon, S.3
Lütz, S.4
Schürmann, M.5
Wohlgemuth, R.6
Coppolecchia, R.7
-
12
-
-
34547127384
-
Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - Part I: Processes with isolated enzymes
-
Goldberg, K., Schroer, K., Lütz, S. and Liese, A., Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - Part I: Processes with isolated enzymes. Appl. Microbiol. Biotechnol., 2007, 76, 237-248.
-
(2007)
Appl. Microbiol. Biotechnol
, vol.76
, pp. 237-248
-
-
Goldberg, K.1
Schroer, K.2
Lütz, S.3
Liese, A.4
-
13
-
-
38049073692
-
Advances in the enzymatic reduction of ketones
-
Moore, J. C., Pollard, D. J., Kosjek, B. and Devine, P. N., Advances in the enzymatic reduction of ketones. Acc. Chem. Res., 2007, 40, 1412-1419.
-
(2007)
Acc. Chem. Res
, vol.40
, pp. 1412-1419
-
-
Moore, J.C.1
Pollard, D.J.2
Kosjek, B.3
Devine, P.N.4
-
14
-
-
33644501784
-
Enzymatic (R)-phenylacetylcarbinol production in a benzaldehyde emuls ion system with Candida utilis cells
-
Satianegara, G., Breuer, M., Hauer, B., Rogers, P. L. and Rosche, B., Enzymatic (R)-phenylacetylcarbinol production in a benzaldehyde emuls ion system with Candida utilis cells. Appl. Microbiol. Biotechnol., 2006, 70, 170-175.
-
(2006)
Appl. Microbiol. Biotechnol
, vol.70
, pp. 170-175
-
-
Satianegara, G.1
Breuer, M.2
Hauer, B.3
Rogers, P.L.4
Rosche, B.5
-
15
-
-
0032530505
-
Biocatalysis to amino acid based chiral pharmaceuticals - examples and perspectives
-
Bommarius, A. S., Schwarm, M. and Drauz, K., Biocatalysis to amino acid based chiral pharmaceuticals - examples and perspectives. J. Mol. Catal. B: Enzym., 1998, 5, 1-11.
-
(1998)
J. Mol. Catal. B: Enzym
, vol.5
, pp. 1-11
-
-
Bommarius, A.S.1
Schwarm, M.2
Drauz, K.3
-
16
-
-
11144346350
-
From enzymes to 'designer bugs' in reductive amination: a new process for the synthesis of L-tert-leucine using a whole cell-catalyst
-
Menzel, A., Werner, H., Altenbuchner, J. and Gröger, H., From enzymes to 'designer bugs' in reductive amination: a new process for the synthesis of L-tert-leucine using a whole cell-catalyst. Eng. Life Sci., 2004, 4, 573-576.
-
(2004)
Eng. Life Sci
, vol.4
, pp. 573-576
-
-
Menzel, A.1
Werner, H.2
Altenbuchner, J.3
Gröger, H.4
-
17
-
-
84987255049
-
Enzyme engineering in starch industry
-
Hollo, J., László, E. and Hoschke, Å., Enzyme engineering in starch industry. Starch-Stärke, 1983, 35, 169-175.
-
(1983)
Starch-Stärke
, vol.35
, pp. 169-175
-
-
Hollo, J.1
László, E.2
Hoschke, Å.3
-
18
-
-
79751520578
-
Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods
-
Hollmann, F., Arends, I. W. and Buehler, K., Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. ChemCatChem., 2010, 2, 762-782.
-
(2010)
ChemCatChem
, vol.2
, pp. 762-782
-
-
Hollmann, F.1
Arends, I.W.2
Buehler, K.3
-
19
-
-
79960570611
-
Redox reactions catalyzed by isolated enzymes
-
Monti, D., Ottolina, G., Carrea, G. and Riva, S., Redox reactions catalyzed by isolated enzymes. Chem. Rev., 2011, 111, 4111- 4140.
-
(2011)
Chem. Rev
, vol.111
, pp. 4111-4140
-
-
Monti, D.1
Ottolina, G.2
Carrea, G.3
Riva, S.4
-
20
-
-
7044227654
-
Biochemical reaction engineering for redox reactions
-
Wandrey, C., Biochemical reaction engineering for redox reactions. Chem. Rec., 2004, 4, 254-265.
-
(2004)
Chem. Rec
, vol.4
, pp. 254-265
-
-
Wandrey, C.1
-
21
-
-
33745762337
-
Biocatalysis: synthesis of chiral intermediates for pharmaceuticals
-
Patel, R. N., Biocatalysis: synthesis of chiral intermediates for pharmaceuticals. Curr. Org. Chem., 2006, 10, 1289-1321.
-
(2006)
Curr. Org. Chem
, vol.10
, pp. 1289-1321
-
-
Patel, R.N.1
-
22
-
-
80555123167
-
Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases
-
Ma, S. M. et al., Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metab. Eng., 2011, 13, 588-597.
-
(2011)
Metab. Eng
, vol.13
, pp. 588-597
-
-
Ma, S.M.1
-
23
-
-
0024236712
-
Cofactor regeneration for enzyme-catalysed synthesis
-
Chenault, H. K., Simon, E. S. and Whitesides, G. M., Cofactor regeneration for enzyme-catalysed synthesis. Biotechnol. Genet. Eng. Rev., 1988, 6, 221-270.
-
(1988)
Biotechnol. Genet. Eng. Rev
, vol.6
, pp. 221-270
-
-
Chenault, H.K.1
Simon, E.S.2
Whitesides, G.M.3
-
24
-
-
38649141527
-
Electroenzymatic synthesis
-
Kohlmann, C., Märkle, W. and Lütz, S., Electroenzymatic synthesis. J. Mol. Catal. B: Enzym., 2008, 51, 57-72.
-
(2008)
J. Mol. Catal. B: Enzym
, vol.51
, pp. 57-72
-
-
Kohlmann, C.1
Märkle, W.2
Lütz, S.3
-
25
-
-
37049088332
-
Electrochemical regeneration of NAD+ - a new evaluation of its actual yield
-
Bonnefoy, J., Moiroux, J., Laval, J. M. and Bourdillon, C., Electrochemical regeneration of NAD+ - a new evaluation of its actual yield. J. Chem. Soc. Faraday Trans. 1, 1988, 84, 941-950.
-
(1988)
J. Chem. Soc. Faraday Trans. 1
, vol.84
, pp. 941-950
-
-
Bonnefoy, J.1
Moiroux, J.2
Laval, J.M.3
Bourdillon, C.4
-
26
-
-
43549125630
-
Enzymatic production of gluconic acid or its salts
-
Google Patents, 27 April
-
Vroemen, A. J. and Beverini, M., Enzymatic production of gluconic acid or its salts. Google Patents, 27 April 1999.
-
(1999)
-
-
Vroemen, A.J.1
Beverini, M.2
-
27
-
-
32044443458
-
Time-resolved resonance Raman, time-resolved UVvisible absorption and DFT calculation study on photo-oxidation of the reduced form of nicotinamide adenine dinucleotide
-
Takahashi, N., Shinno, T., Tachikawa, M., Yuzawa, T. and Takahashi, H., Time-resolved resonance Raman, time-resolved UVvisible absorption and DFT calculation study on photo-oxidation of the reduced form of nicotinamide adenine dinucleotide. J. Raman Spectrosc., 2006, 37, 283-290.
-
(2006)
J. Raman Spectrosc
, vol.37
, pp. 283-290
-
-
Takahashi, N.1
Shinno, T.2
Tachikawa, M.3
Yuzawa, T.4
Takahashi, H.5
-
28
-
-
0001430598
-
Electrochemical reduction of diphosphopyridine nucleotide
-
Burnett, J. N. and Underwood, A. L., Electrochemical reduction of diphosphopyridine nucleotide. Biochemistry, 1965, 4, 2060-2064.
-
(1965)
Biochemistry
, vol.4
, pp. 2060-2064
-
-
Burnett, J.N.1
Underwood, A.L.2
-
29
-
-
0342296500
-
Tentatives de régénération du coenzyme NADH par réduction électrochimique et hydrogénation catalytique
-
Bergel, A., Durliat, H. and Comtat, M., Tentatives de régénération du coenzyme NADH par réduction électrochimique et hydrogénation catalytique. J. Chim. Phys. Pcb., 1987, 84, 593-598.
-
(1987)
J. Chim. Phys. Pcb
, vol.84
, pp. 593-598
-
-
Bergel, A.1
Durliat, H.2
Comtat, M.3
-
30
-
-
0012025444
-
Thin-layer spectroelectrochemical study of the reversible reaction between nicotinamide adenine dinucleotide and flavin adenine dinucleotide
-
Bergel, A. and Comtat, M., Thin-layer spectroelectrochemical study of the reversible reaction between nicotinamide adenine dinucleotide and flavin adenine dinucleotide. J. Electroanal. Chem. Interfacial Electrochem., 1991, 302, 219-231.
-
(1991)
J. Electroanal. Chem. Interfacial Electrochem
, vol.302
, pp. 219-231
-
-
Bergel, A.1
Comtat, M.2
-
31
-
-
0042933788
-
Recent developments in pyridine nucleotide regeneration
-
van der Donk, W. A. and Zhao, H., Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol., 2003, 14, 421-426.
-
(2003)
Curr. Opin. Biotechnol
, vol.14
, pp. 421-426
-
-
van der Donk, W.A.1
Zhao, H.2
-
32
-
-
33847153497
-
Electrochemical regeneration of NADH using conductive vanadia-silica xerogels
-
Siu, E., Won, K. and Park, C. B., Electrochemical regeneration of NADH using conductive vanadia-silica xerogels. Biotechnol. Prog., 2007, 23, 293-296.
-
(2007)
Biotechnol. Prog
, vol.23
, pp. 293-296
-
-
Siu, E.1
Won, K.2
Park, C.B.3
-
33
-
-
0000676612
-
Enzyme-catalyzed organic synthesis: electrochemical regeneration of NAD(P)H from NAD(P) using methyl viologen and flavoenzymes
-
DiCosimo, R., Wong, C. H., Daniels, L. and Whitesides, G. M., Enzyme-catalyzed organic synthesis: electrochemical regeneration of NAD(P)H from NAD(P) using methyl viologen and flavoenzymes. J. Org. Chem., 1981, 46, 4622-4623.
-
(1981)
J. Org. Chem
, vol.46
, pp. 4622-4623
-
-
DiCosimo, R.1
Wong, C.H.2
Daniels, L.3
Whitesides, G.M.4
-
34
-
-
0001100154
-
Spectroelectrochemical study of indirect reduction of triphosphopyridine nucleotide: I. Methyl viologen, ferredoxin-TPN-reductase and TPN
-
Ito, M. and Kuwana, T., Spectroelectrochemical study of indirect reduction of triphosphopyridine nucleotide: I. Methyl viologen, ferredoxin-TPN-reductase and TPN. J. Electroanal. Chem. Interfacial Electrochem., 1971, 32, 415-425.
-
(1971)
J. Electroanal. Chem. Interfacial Electrochem
, vol.32
, pp. 415-425
-
-
Ito, M.1
Kuwana, T.2
-
35
-
-
84897975892
-
Mediators suitable for the electrochemical regeneration of NADH, NADPH or analogs thereof
-
EP Patent 0,667,397
-
Corey, P. F. and Musho, M. K., Mediators suitable for the electrochemical regeneration of NADH, NADPH or analogs thereof. EP Patent 0,667,397, 2001.
-
(2001)
-
-
Corey, P.F.1
Musho, M.K.2
-
36
-
-
0035471221
-
Surface modified electrodes for NADH oxidation in oxidoreductase-catalysed synthesis
-
Délécouls-Servat, K., Bergel, A. and Bassèguy, R., Surface modified electrodes for NADH oxidation in oxidoreductase-catalysed synthesis. J. Appl. Electrochem., 2001, 31, 1095-1101.
-
(2001)
J. Appl. Electrochem
, vol.31
, pp. 1095-1101
-
-
Délécouls-Servat, K.1
Bergel, A.2
Bassèguy, R.3
-
37
-
-
0020798109
-
Modified glassy carbon electrode with immobilized enzyme: NAD/NADH lactic dehydrogenase
-
Laval, J. M. and Bourdillon, C., Modified glassy carbon electrode with immobilized enzyme: NAD/NADH lactic dehydrogenase. J. Electroanal. Chem. Interfacial Electrochem., 1983, 152, 125-141.
-
(1983)
J. Electroanal. Chem. Interfacial Electrochem
, vol.152
, pp. 125-141
-
-
Laval, J.M.1
Bourdillon, C.2
-
38
-
-
0037451066
-
Transition metal catalyzed regeneration of nicotinamide coenzymes with hydrogen
-
Wagenknecht, P. S., Penney, J. M. and Hembre, R. T., Transition metal catalyzed regeneration of nicotinamide coenzymes with hydrogen. Organometallics, 2003, 22, 1180-1182.
-
(2003)
Organometallics
, vol.22
, pp. 1180-1182
-
-
Wagenknecht, P.S.1
Penney, J.M.2
Hembre, R.T.3
-
39
-
-
0032567185
-
Coupling of catalyses by carbonyl clusters and dehydrogenases: reduction of pyruvate to l-lactate by dihydrogen
-
Bhaduri, S., Mathur, P., Payra, P. and Sharma, K., Coupling of catalyses by carbonyl clusters and dehydrogenases: reduction of pyruvate to l-lactate by dihydrogen. J. Am. Chem. Soc., 1998, 120, 12127-12128.
-
(1998)
J. Am. Chem. Soc
, vol.120
, pp. 12127-12128
-
-
Bhaduri, S.1
Mathur, P.2
Payra, P.3
Sharma, K.4
-
40
-
-
0024713851
-
Enzyme catalysed biotransformations through photochemical regeneration of nicotinamide cofactors
-
Willner, I. and Mandler, D., Enzyme catalysed biotransformations through photochemical regeneration of nicotinamide cofactors. Enzyme Microb. Technol., 1989, 11, 467-483.
-
(1989)
Enzyme Microb. Technol
, vol.11
, pp. 467-483
-
-
Willner, I.1
Mandler, D.2
-
41
-
-
84989738071
-
+ cofactors by photosensitized electron transfer
-
+ cofactors by photosensitized electron transfer. Photochem. Photobiol., 1982, 36, 283-290.
-
(1982)
Photochem. Photobiol
, vol.36
, pp. 283-290
-
-
Julliard, M.1
Le Petit, J.2
-
42
-
-
0022929361
-
+ cofactor by photosensitized electron transfer in an immobilized alcohol dehydrogenase system
-
+ cofactor by photosensitized electron transfer in an immobilized alcohol dehydrogenase system. Biotechnol. Bioeng., 1986, 28, 1774-1779.
-
(1986)
Biotechnol. Bioeng
, vol.28
, pp. 1774-1779
-
-
Julliard, M.1
Le Petit, J.2
Ritz, P.3
-
44
-
-
0037084327
-
Highly enantioselective preparation of multifunctionalized propargylic building blocks
-
Schubert, T., Hummel, W. and Müller, M., Highly enantioselective preparation of multifunctionalized propargylic building blocks. Angew. Chem., Int. Ed. Engl., 2002, 41, 634-637.
-
(2002)
Angew. Chem., Int. Ed. Engl
, vol.41
, pp. 634-637
-
-
Schubert, T.1
Hummel, W.2
Müller, M.3
-
45
-
-
34948832633
-
Highly efficient asymmetric reduction of arylpropionic aldehydes by horse liver alcohol dehydrogenase through dynamic kinetic resolution
-
Giacomini, D., Galletti, P., Quintavalla, A., Gucciardo. G. and Paradisi, F., Highly efficient asymmetric reduction of arylpropionic aldehydes by horse liver alcohol dehydrogenase through dynamic kinetic resolution. Chem. Commun., 2007, 4038-4040.
-
(2007)
Chem. Commun
, pp. 4038-4040
-
-
Giacomini, D.1
Galletti, P.2
Quintavalla, A.3
Gucciardo, G.4
Paradisi, F.5
-
46
-
-
33847087242
-
Enzyme catalyzed organic synthesis: NADH regeneration by using formate dehydrogenase
-
Shaked, Z. and Whitesides, G. M., Enzyme catalyzed organic synthesis: NADH regeneration by using formate dehydrogenase. J. Am. Chem. Soc., 1980, 102, 7104-7105.
-
(1980)
J. Am. Chem. Soc
, vol.102
, pp. 7104-7105
-
-
Shaked, Z.1
Whitesides, G.M.2
-
47
-
-
77954251837
-
Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds
-
Weckbecker, A., Gröger, H. and Hummel, W., Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. Biosyst. Eng., I, 2010, 195-242.
-
(2010)
Biosyst. Eng. I
, pp. 195-242
-
-
Weckbecker, A.1
Gröger, H.2
Hummel, W.3
-
48
-
-
84898017635
-
Coupled cofactor dependent enzymatic reaction systems in aqueous media
-
EP Patent 1,606,412
-
Groeger, H. et al., Coupled cofactor dependent enzymatic reaction systems in aqueous media. EP Patent 1,606,412, 2005.
-
(2005)
-
-
Groeger, H.1
-
49
-
-
0022076889
-
Enzymatic vs fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis
-
Wong, C., Drueckhammer, D. G. and Sweers, H. M., Enzymatic vs fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J. Am. Chem. Soc., 1985, 107, 4028-4031.
-
(1985)
J. Am. Chem. Soc
, vol.107
, pp. 4028-4031
-
-
Wong, C.1
Drueckhammer, D.G.2
Sweers, H.M.3
-
50
-
-
0000999905
-
Enzyme catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides
-
Wong, C. H. and Whitesides, G. M., Enzyme catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc., 1981, 103, 4890- 4899.
-
(1981)
J. Am. Chem. Soc
, vol.103
, pp. 4890-4899
-
-
Wong, C.H.1
Whitesides, G.M.2
-
51
-
-
37049119309
-
Preparative scale reductions of cyclic ketones and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD
-
Jones, J. B., Sneddon, D. W., Higgins, W. and Lewis, A. J., Preparative scale reductions of cyclic ketones and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD. J. Chem. Soc., Chem. Commun., 1972, 856-857.
-
(1972)
J. Chem. Soc., Chem. Commun
, pp. 856-857
-
-
Jones, J.B.1
Sneddon, D.W.2
Higgins, W.3
Lewis, A.J.4
-
52
-
-
0001389862
-
Enzyme catalysed organic synthesis: NAD(P)H regeneration using dihydrogen and the hydrogenase from Methanobacterium thermoautotrophicum
-
Wong, C. H., Daniels, L., Orme-Johnson, W. H. and Whitesides, G. M., Enzyme catalysed organic synthesis: NAD(P)H regeneration using dihydrogen and the hydrogenase from Methanobacterium thermoautotrophicum. J. Am. Chem. Soc., 1981, 103, 6227- 6228.
-
(1981)
J. Am. Chem. Soc
, vol.103
, pp. 6227-6228
-
-
Wong, C.H.1
Daniels, L.2
Orme-Johnson, W.H.3
Whitesides, G.M.4
-
53
-
-
0024851477
-
Lactate dehydrogenase catalyzed regeneration of NAD from NADH for use in enzyme catalyzed synthesis
-
Chenault, H. K. and Whitesides, G. M., Lactate dehydrogenase catalyzed regeneration of NAD from NADH for use in enzyme catalyzed synthesis. Bioorg. Chem., 1989, 17, 400-409.
-
(1989)
Bioorg. Chem
, vol.17
, pp. 400-409
-
-
Chenault, H.K.1
Whitesides, G.M.2
-
54
-
-
4644257598
-
An enzymatic process to α -ketoglutarate from l-glutamate: the coupled system l-glutamate dehydrogenase/NADH oxidase
-
Ödman, P., Wellborn, W. B. and Bommarius, A. S., An enzymatic process to α -ketoglutarate from l-glutamate: the coupled system l-glutamate dehydrogenase/NADH oxidase. Tetrahedron: Asymmetry, 2004, 15, 2933-2937.
-
(2004)
Tetrahedron: Asymmetry
, vol.15
, pp. 2933-2937
-
-
Ödman, P.1
Wellborn, W.B.2
Bommarius, A.S.3
-
55
-
-
84898002933
-
-
WO Patent 2,003,091,423
-
Hummel, W., Abokitse, K. and Gröger, H., ADH from Rhodococcus erythropolis, WO Patent 2,003,091,423, 2003.
-
(2003)
ADH from Rhodococcus erythropolis
-
-
Hummel, W.1
Abokitse, K.2
Gröger, H.3
-
56
-
-
84897981299
-
Use of malate dehydrogenase for NADH regeneration
-
WO Patent 2,004,022,764
-
Náamnieh, S., Hummel, W. and Gröger, H., Use of malate dehydrogenase for NADH regeneration. WO Patent 2,004,022,764, 2004.
-
(2004)
-
-
Náamnieh, S.1
Hummel, W.2
Gröger, H.3
-
57
-
-
84897985566
-
Method for producing primary alcohols by reducing aldehydes using an alcohol dehydrogenase for a coupled cofactor regeneration
-
EP Patent 1,784,495
-
Gröger, H., Chamouleau, F. and Hagedorn, C., Method for producing primary alcohols by reducing aldehydes using an alcohol dehydrogenase for a coupled cofactor regeneration. EP Patent 1,784,495, 2007.
-
(2007)
-
-
Gröger, H.1
Chamouleau, F.2
Hagedorn, C.3
-
58
-
-
85012035225
-
Synthesis of ethyl (3R, 5S)-dihydroxy-6-benzyloxy hexanote
-
WO Patent 2,011,066,755
-
Chen, Y. and Wu, X., Synthesis of ethyl (3R, 5S)-dihydroxy-6-benzyloxy hexanote. WO Patent 2,011,066,755, 2011.
-
(2011)
-
-
Chen, Y.1
Wu, X.2
-
59
-
-
84876433914
-
Effects of NADH availability on the Klebsiella pneumoniae strain with 1, 3-propanediol operon over-expression
-
Ma, Z., Shentu, X., Bian, Y. and Yu, X., Effects of NADH availability on the Klebsiella pneumoniae strain with 1, 3-propanediol operon over-expression. J. Basic Microbiol., 2013, 53, 348-354.
-
(2013)
J. Basic Microbiol
, vol.53
, pp. 348-354
-
-
Ma, Z.1
Shentu, X.2
Bian, Y.3
Yu, X.4
-
60
-
-
36849023132
-
Aldehyde oxidoreductase as a biocatalyst: reductions of vanillic acid
-
Venkitasubramanian, P., Daniels, L., Das, S., Lamm, A. S. and Rosazza, J. P., Aldehyde oxidoreductase as a biocatalyst: reductions of vanillic acid. Enzyme Microb. Technol., 2008, 42, 130- 137.
-
(2008)
Enzyme Microb. Technol
, vol.42
, pp. 130-137
-
-
Venkitasubramanian, P.1
Daniels, L.2
Das, S.3
Lamm, A.S.4
Rosazza, J.P.5
-
61
-
-
84863109657
-
Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering
-
Wang, Z., Gao, C., Wang, Q., Liang, Q. and Qi, Q., Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering. Biochem. Eng. J., 2012, 67, 126-131.
-
(2012)
Biochem. Eng. J
, vol.67
, pp. 126-131
-
-
Wang, Z.1
Gao, C.2
Wang, Q.3
Liang, Q.4
Qi, Q.5
-
62
-
-
78751476638
-
450-dependent propane biotransformations using engineered Escherichia coli
-
450-dependent propane biotransformations using engineered Escherichia coli. Biotechnol. Bioeng., 2011, 108, 500-510.
-
(2011)
Biotechnol. Bioeng
, vol.108
, pp. 500-510
-
-
Fasan, R.1
-
63
-
-
79955164750
-
Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
-
Bastian, S., Liu, X., Meyerowitz, J. T., Snow, C. D., Chen, M. M. and Arnold, F. H., Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng., 2011, 13, 345-352.
-
(2011)
Metab. Eng
, vol.13
, pp. 345-352
-
-
Bastian, S.1
Liu, X.2
Meyerowitz, J.T.3
Snow, C.D.4
Chen, M.M.5
Arnold, F.H.6
-
64
-
-
66749091546
-
Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerev isiae
-
Bengtsson, O., Hahn-Hägerdal, B. and Gorwa-Grauslund, M. F., Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerev isiae. Biotechnol. Biofuels, 2009, 2, 122.
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 122
-
-
Bengtsson, O.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
65
-
-
33644879465
-
M for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
-
M for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng., 2006, 93, 665-673.
-
(2006)
Biotechnol. Bioeng
, vol.93
, pp. 665-673
-
-
Jeppsson, M.1
Bengtsson, O.2
Franke, K.3
Lee, H.4
Hahn-Hägerdal, B.5
Gorwa-Grauslund, M.F.6
-
66
-
-
33744496331
-
Optimizing a biocatalyst for improved NAD(P)H regeneration: directed evolution of phosphite dehydrogenase
-
Woodyer, R., van der Donk, W. A. and Zhao, H., Optimizing a biocatalyst for improved NAD(P)H regeneration: directed evolution of phosphite dehydrogenase. Comb. Chem. High Throughput Screen., 2006, 9, 237-245.
-
(2006)
Comb. Chem. High Throughput Screen
, vol.9
, pp. 237-245
-
-
Woodyer, R.1
van der Donk, W.A.2
Zhao, H.3
-
67
-
-
84897990422
-
Phosphite dehydrogenase mutants for nicotinamide cofactor regeneration
-
EP Patent 1,636,353
-
Zhao, H., Woodyer, R., Metcalf, W. and van der Donk, W. A., Phosphite dehydrogenase mutants for nicotinamide cofactor regeneration. EP Patent 1,636,353, 2006.
-
(2006)
-
-
Zhao, H.1
Woodyer, R.2
Metcalf, W.3
van der Donk, W.A.4
-
68
-
-
0034466694
-
Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone
-
Boonstra, B., Rathbone, D. A., French, C. E., Walker, E. H. and Bruce, N. C., Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl. Environ. Microbiol., 2000, 66, 5161-5166.
-
(2000)
Appl. Environ. Microbiol
, vol.66
, pp. 5161-5166
-
-
Boonstra, B.1
Rathbone, D.A.2
French, C.E.3
Walker, E.H.4
Bruce, N.C.5
-
69
-
-
84897986599
-
Enzymatic cofactor cycling using soluble pyridine nucleotide transhydrogenase
-
EP Patent 0,939,799
-
Bruce, N. C. and French, C. E., Enzymatic cofactor cycling using soluble pyridine nucleotide transhydrogenase. 2005, EP Patent 0,939,799.
-
(2005)
-
-
Bruce, N.C.1
French, C.E.2
-
70
-
-
0031877248
-
Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase
-
de Felipe, F. L., Kleerebezem, M., de Vos, W. M. and Hugenholtz, J., Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol., 1998, 180, 3804-3808.
-
(1998)
J. Bacteriol
, vol.180
, pp. 3804-3808
-
-
de Felipe, F.L.1
Kleerebezem, M.2
de Vos, W.M.3
Hugenholtz, J.4
-
71
-
-
68049137324
-
Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
-
Hou, J., Lages, N. F., Oldiges, M. and Vemuri, G. N., Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab. Eng., 2009, 11, 253-261.
-
(2009)
Metab. Eng
, vol.11
, pp. 253-261
-
-
Hou, J.1
Lages, N.F.2
Oldiges, M.3
Vemuri, G.N.4
-
72
-
-
0036663620
-
The effect of NAPRTase overexpression on the total levels of NAD, The NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli
-
Berríos-Rivera, S. J., San, K. Y. and Bennett, G. N., The effect of NAPRTase overexpression on the total levels of NAD, The NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metab. Eng., 2002, 4, 238-247.
-
(2002)
Metab. Eng
, vol.4
, pp. 238-247
-
-
Berríos-Rivera, S.J.1
San, K.Y.2
Bennett, G.N.3
-
73
-
-
76749151341
-
Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
-
Chemler, J. A., Fowler, Z. L., McHugh, K. P. and Koffas, M. A., Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng., 2010, 12, 96-104.
-
(2010)
Metab. Eng
, vol.12
, pp. 96-104
-
-
Chemler, J.A.1
Fowler, Z.L.2
McHugh, K.P.3
Koffas, M.A.4
-
74
-
-
79954575678
-
Immobilization of Kluyveromyces lactis β -galactosidase on concanavalin A layered aluminium oxide nanoparticles - its future aspects in biosensor applications
-
Ansari, S. A. and Husain, Q., Immobilization of Kluyveromyces lactis β -galactosidase on concanavalin A layered aluminium oxide nanoparticles - its future aspects in biosensor applications. J. Mol. Catal. B: Enzym., 2011, 70, 119-126.
-
(2011)
J. Mol. Catal. B: Enzym
, vol.70
, pp. 119-126
-
-
Ansari, S.A.1
Husain, Q.2
-
75
-
-
38949201064
-
4 nanoparticle composite for laccase immobilization
-
4 nanoparticle composite for laccase immobilization. Int. J. Nanomed., 2007, 2, 775-784.
-
(2007)
Int. J. Nanomed
, vol.2
, pp. 775-784
-
-
Huang, J.1
Liu, C.2
Xiao, H.3
Wang, J.4
Jiang, D.5
Gu, E.6
-
76
-
-
13644250281
-
Examination of cholesterol oxidase attachment to magnetic nanoparticles
-
Kouassi, G. K., Irudayaraj, J. and McCarty, G., Examination of cholesterol oxidase attachment to magnetic nanoparticles. J. Nanobiotechnol., 2005, 3, 1.
-
(2005)
J. Nanobiotechnol
, vol.3
, pp. 1
-
-
Kouassi, G.K.1
Irudayaraj, J.2
McCarty, G.3
-
77
-
-
64649096755
-
Immobilization of α -amylase onto cellulose coated magnetite (CCM) nanoparticles and preliminary starch degradation study
-
Namdeo, M. and Bajpai, S. K., Immobilization of α -amylase onto cellulose coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J. Mol. Catal. B: Enzym., 2009, 59, 134- 139.
-
(2009)
J. Mol. Catal. B: Enzym
, vol.59
, pp. 134-139
-
-
Namdeo, M.1
Bajpai, S.K.2
-
78
-
-
3342986578
-
Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor
-
Zhang, F. et al., Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta, 2004, 519, 155- 160.
-
(2004)
Anal. Chim. Acta
, vol.519
, pp. 155-160
-
-
Zhang, F.1
-
79
-
-
78650681129
-
Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle supported multienzyme system with in situ cofactor regeneration
-
Zhang, Y., Gao, F., Zhang, S. P., Su, Z. G., Ma, G. H. and Wang, P., Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle supported multienzyme system with in situ cofactor regeneration. Bioresour. Technol., 2011, 102, 1837-1843.
-
(2011)
Bioresour. Technol
, vol.102
, pp. 1837-1843
-
-
Zhang, Y.1
Gao, F.2
Zhang, S.P.3
Su, Z.G.4
Ma, G.H.5
Wang, P.6
-
80
-
-
0037684773
-
An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration
-
Mak, K. K., Wollenberger, U., Scheller, F. W. and Renneberg, R., An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration. Biosens. Bioelectron., 2003, 18, 1095-1100.
-
(2003)
Biosens. Bioelectron
, vol.18
, pp. 1095-1100
-
-
Mak, K.K.1
Wollenberger, U.2
Scheller, F.W.3
Renneberg, R.4
-
81
-
-
2442564314
-
Amperometric determination of lactate with novel trienzyme/poly (carbamoyl) sulfonate hydrogel based sensor
-
Kwan, R. C., Hon, P. Y., Mak, K. K. and Renneberg, R., Amperometric determination of lactate with novel trienzyme/poly (carbamoyl) sulfonate hydrogel based sensor. Biosens. Bioelectron., 2004, 19, 1745-1752.
-
(2004)
Biosens. Bioelectron
, vol.19
, pp. 1745-1752
-
-
Kwan, R.C.1
Hon, P.Y.2
Mak, K.K.3
Renneberg, R.4
-
82
-
-
58149293417
-
Regeneration of the nicotinamide cofactor using a mediator free electrochemical method with a tin oxide electrode
-
Kim, Y. H. and Yoo, Y. J., Regeneration of the nicotinamide cofactor using a mediator free electrochemical method with a tin oxide electrode. Enzyme Microb. Technol., 2009, 44, 129- 134.
-
(2009)
Enzyme Microb. Technol
, vol.44
, pp. 129-134
-
-
Kim, Y.H.1
Yoo, Y.J.2
-
84
-
-
3242707991
-
Direct regeneration of NADH on a ruthenium modified glassy carbon electrode
-
Azem, A., Man, F. and Omanovic, S., Direct regeneration of NADH on a ruthenium modified glassy carbon electrode. J. Mol. Catal. A: Chem., 2004, 219, 283-299.
-
(2004)
J. Mol. Catal. A: Chem
, vol.219
, pp. 283-299
-
-
Azem, A.1
Man, F.2
Omanovic, S.3
-
85
-
-
84858622387
-
Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nanopatterned glassy carbon/Pt and glassy carbon/Ni electrodes
-
Ali, I., Gill, A. and Omanovic, S., Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nanopatterned glassy carbon/Pt and glassy carbon/Ni electrodes. Chem. Eng. J., 2012, 188, 173-180.
-
(2012)
Chem. Eng. J
, vol.188
, pp. 173-180
-
-
Ali, I.1
Gill, A.2
Omanovic, S.3
-
86
-
-
34250648032
-
Electroenzymatic synthesis of chiral alcohols in an aqueous organic two-phase system
-
Hildebrand, F. and Lütz, S., Electroenzymatic synthesis of chiral alcohols in an aqueous organic two-phase system. Tetrahedron: Asymmetry, 2007, 18, 1187-1193.
-
(2007)
Tetrahedron: Asymmetry
, vol.18
, pp. 1187-1193
-
-
Hildebrand, F.1
Lütz, S.2
-
87
-
-
84897968563
-
Method comprising the indirect electrochemical regeneration of NAD(P)H
-
Google Patents
-
Schmid, A., Hollmann, F., Hauer, B., and Zelinski, T., Method comprising the indirect electrochemical regeneration of NAD(P)H. Google Patents, 2006.
-
(2006)
-
-
Schmid, A.1
Hollmann, F.2
Hauer, B.3
Zelinski, T.4
-
88
-
-
0037448512
-
+ regeneration using 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator
-
+ regeneration using 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator. J. Electroanal. Chem., 2003, 541, 109- 115.
-
(2003)
J. Electroanal. Chem
, vol.541
, pp. 109-115
-
-
Schröder, I.1
Steckhan, E.2
Liese, A.3
-
89
-
-
79954593169
-
Biocatalytic process optimization based on mechanistic modeling of cholic acid oxidation with cofactor regeneration
-
Braun, M., Link, H., Liu, L., Schmid, R. D. and Weuster-Botz, D., Biocatalytic process optimization based on mechanistic modeling of cholic acid oxidation with cofactor regeneration. Biotechnol. Bioeng., 2011, 108, 1307-1317.
-
(2011)
Biotechnol. Bioeng
, vol.108
, pp. 1307-1317
-
-
Braun, M.1
Link, H.2
Liu, L.3
Schmid, R.D.4
Weuster-Botz, D.5
-
91
-
-
57049150799
-
Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
-
Martínez, I., Zhu, J., Lin, H., Bennett, G. N. and San, K. Y., Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab. Eng., 2008, 10, 352-359.
-
(2008)
Metab. Eng
, vol.10
, pp. 352-359
-
-
Martínez, I.1
Zhu, J.2
Lin, H.3
Bennett, G.N.4
San, K.Y.5
|