메뉴 건너뛰기




Volumn 106, Issue 7, 2014, Pages 946-957

Cofactor regeneration - an important aspect of biocatalysis

Author keywords

Biocatalysis; Biotransformation; Cofactor regeneration; Enzymes

Indexed keywords


EID: 84898004861     PISSN: 00113891     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Review
Times cited : (84)

References (91)
  • 1
    • 84902430501 scopus 로고    scopus 로고
    • Industrial applications of biocatalysis: an overview
    • (eds Carreira, E. M. and Yamamoto, H.), Elsevier, Amsterdam
    • Wells, A., Industrial applications of biocatalysis: an overview. In Industrial Applications of Asymmetric Synthesis (eds Carreira, E. M. and Yamamoto, H.), Elsevier, Amsterdam, 2012, pp. 253-287.
    • (2012) Industrial Applications of Asymmetric Synthesis , pp. 253-287
    • Wells, A.1
  • 4
    • 0037950624 scopus 로고    scopus 로고
    • The first highly enantioselective homogeneously catalyzed asymmetric reductive amination: synthesis of alpha-N-benzylamino acids
    • Kadyrov, R., Riermeier, T. H., Dingerdissen, U., Tararov, V. and Börner, A., The first highly enantioselective homogeneously catalyzed asymmetric reductive amination: synthesis of alpha-Nbenzylamino acids. J. Org. Chem., 2003, 68, 4067-4070.
    • (2003) J. Org. Chem , vol.68 , pp. 4067-4070
    • Kadyrov, R.1    Riermeier, T.H.2    Dingerdissen, U.3    Tararov, V.4    Börner, A.5
  • 6
    • 0346964468 scopus 로고    scopus 로고
    • Biocatalysts in synthetic organic chemistry
    • Roberts, S. M., Biocatalysts in synthetic organic chemistry. Tetrahedron, 2004, 60, 499-500.
    • (2004) Tetrahedron , vol.60 , pp. 499-500
    • Roberts, S.M.1
  • 7
    • 0021449680 scopus 로고
    • Biocatalysis in natural products chemistry
    • Sariaslani, F. S. and Rosazza, J. P., Biocatalysis in natural products chemistry. Enzyme Microb. Technol., 1984, 6, 242-253.
    • (1984) Enzyme Microb. Technol , vol.6 , pp. 242-253
    • Sariaslani, F.S.1    Rosazza, J.P.2
  • 9
    • 0037436563 scopus 로고    scopus 로고
    • Dispelling the myths - biocatalysis in industrial synthesis
    • Schoemaker, H. E., Mink, D. and Wubbolts, M. G., Dispelling the myths - biocatalysis in industrial synthesis. Science, 2003, 299, 1694-1697.
    • (2003) Science , vol.299 , pp. 1694-1697
    • Schoemaker, H.E.1    Mink, D.2    Wubbolts, M.G.3
  • 10
    • 0035313673 scopus 로고    scopus 로고
    • Industrial biocatalysis
    • Zaks, A., Industrial biocatalysis. Curr. Opin. Chem. Biol., 2001, 5, 130-136.
    • (2001) Curr. Opin. Chem. Biol , vol.5 , pp. 130-136
    • Zaks, A.1
  • 11
    • 84870921311 scopus 로고    scopus 로고
    • The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC)
    • Meyer, H. P., Eichhorn, E., Hanlon, S., Lütz, S., Schürmann, M., Wohlgemuth, R. and Coppolecchia, R., The use of enzymes in organic synthesis and the life sciences: perspectives from the Swiss Industrial Biocatalysis Consortium (SIBC). Catal. Sci. Technol., 2013, 3, 29-40.
    • (2013) Catal. Sci. Technol , vol.3 , pp. 29-40
    • Meyer, H.P.1    Eichhorn, E.2    Hanlon, S.3    Lütz, S.4    Schürmann, M.5    Wohlgemuth, R.6    Coppolecchia, R.7
  • 12
    • 34547127384 scopus 로고    scopus 로고
    • Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - Part I: Processes with isolated enzymes
    • Goldberg, K., Schroer, K., Lütz, S. and Liese, A., Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - Part I: Processes with isolated enzymes. Appl. Microbiol. Biotechnol., 2007, 76, 237-248.
    • (2007) Appl. Microbiol. Biotechnol , vol.76 , pp. 237-248
    • Goldberg, K.1    Schroer, K.2    Lütz, S.3    Liese, A.4
  • 13
  • 14
    • 33644501784 scopus 로고    scopus 로고
    • Enzymatic (R)-phenylacetylcarbinol production in a benzaldehyde emuls ion system with Candida utilis cells
    • Satianegara, G., Breuer, M., Hauer, B., Rogers, P. L. and Rosche, B., Enzymatic (R)-phenylacetylcarbinol production in a benzaldehyde emuls ion system with Candida utilis cells. Appl. Microbiol. Biotechnol., 2006, 70, 170-175.
    • (2006) Appl. Microbiol. Biotechnol , vol.70 , pp. 170-175
    • Satianegara, G.1    Breuer, M.2    Hauer, B.3    Rogers, P.L.4    Rosche, B.5
  • 15
    • 0032530505 scopus 로고    scopus 로고
    • Biocatalysis to amino acid based chiral pharmaceuticals - examples and perspectives
    • Bommarius, A. S., Schwarm, M. and Drauz, K., Biocatalysis to amino acid based chiral pharmaceuticals - examples and perspectives. J. Mol. Catal. B: Enzym., 1998, 5, 1-11.
    • (1998) J. Mol. Catal. B: Enzym , vol.5 , pp. 1-11
    • Bommarius, A.S.1    Schwarm, M.2    Drauz, K.3
  • 16
    • 11144346350 scopus 로고    scopus 로고
    • From enzymes to 'designer bugs' in reductive amination: a new process for the synthesis of L-tert-leucine using a whole cell-catalyst
    • Menzel, A., Werner, H., Altenbuchner, J. and Gröger, H., From enzymes to 'designer bugs' in reductive amination: a new process for the synthesis of L-tert-leucine using a whole cell-catalyst. Eng. Life Sci., 2004, 4, 573-576.
    • (2004) Eng. Life Sci , vol.4 , pp. 573-576
    • Menzel, A.1    Werner, H.2    Altenbuchner, J.3    Gröger, H.4
  • 17
    • 84987255049 scopus 로고
    • Enzyme engineering in starch industry
    • Hollo, J., László, E. and Hoschke, Å., Enzyme engineering in starch industry. Starch-Stärke, 1983, 35, 169-175.
    • (1983) Starch-Stärke , vol.35 , pp. 169-175
    • Hollo, J.1    László, E.2    Hoschke, Å.3
  • 18
    • 79751520578 scopus 로고    scopus 로고
    • Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods
    • Hollmann, F., Arends, I. W. and Buehler, K., Biocatalytic redox reactions for organic synthesis: nonconventional regeneration methods. ChemCatChem., 2010, 2, 762-782.
    • (2010) ChemCatChem , vol.2 , pp. 762-782
    • Hollmann, F.1    Arends, I.W.2    Buehler, K.3
  • 19
    • 79960570611 scopus 로고    scopus 로고
    • Redox reactions catalyzed by isolated enzymes
    • Monti, D., Ottolina, G., Carrea, G. and Riva, S., Redox reactions catalyzed by isolated enzymes. Chem. Rev., 2011, 111, 4111- 4140.
    • (2011) Chem. Rev , vol.111 , pp. 4111-4140
    • Monti, D.1    Ottolina, G.2    Carrea, G.3    Riva, S.4
  • 20
    • 7044227654 scopus 로고    scopus 로고
    • Biochemical reaction engineering for redox reactions
    • Wandrey, C., Biochemical reaction engineering for redox reactions. Chem. Rec., 2004, 4, 254-265.
    • (2004) Chem. Rec , vol.4 , pp. 254-265
    • Wandrey, C.1
  • 21
    • 33745762337 scopus 로고    scopus 로고
    • Biocatalysis: synthesis of chiral intermediates for pharmaceuticals
    • Patel, R. N., Biocatalysis: synthesis of chiral intermediates for pharmaceuticals. Curr. Org. Chem., 2006, 10, 1289-1321.
    • (2006) Curr. Org. Chem , vol.10 , pp. 1289-1321
    • Patel, R.N.1
  • 22
    • 80555123167 scopus 로고    scopus 로고
    • Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases
    • Ma, S. M. et al., Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metab. Eng., 2011, 13, 588-597.
    • (2011) Metab. Eng , vol.13 , pp. 588-597
    • Ma, S.M.1
  • 26
    • 43549125630 scopus 로고    scopus 로고
    • Enzymatic production of gluconic acid or its salts
    • Google Patents, 27 April
    • Vroemen, A. J. and Beverini, M., Enzymatic production of gluconic acid or its salts. Google Patents, 27 April 1999.
    • (1999)
    • Vroemen, A.J.1    Beverini, M.2
  • 27
    • 32044443458 scopus 로고    scopus 로고
    • Time-resolved resonance Raman, time-resolved UVvisible absorption and DFT calculation study on photo-oxidation of the reduced form of nicotinamide adenine dinucleotide
    • Takahashi, N., Shinno, T., Tachikawa, M., Yuzawa, T. and Takahashi, H., Time-resolved resonance Raman, time-resolved UVvisible absorption and DFT calculation study on photo-oxidation of the reduced form of nicotinamide adenine dinucleotide. J. Raman Spectrosc., 2006, 37, 283-290.
    • (2006) J. Raman Spectrosc , vol.37 , pp. 283-290
    • Takahashi, N.1    Shinno, T.2    Tachikawa, M.3    Yuzawa, T.4    Takahashi, H.5
  • 28
    • 0001430598 scopus 로고
    • Electrochemical reduction of diphosphopyridine nucleotide
    • Burnett, J. N. and Underwood, A. L., Electrochemical reduction of diphosphopyridine nucleotide. Biochemistry, 1965, 4, 2060-2064.
    • (1965) Biochemistry , vol.4 , pp. 2060-2064
    • Burnett, J.N.1    Underwood, A.L.2
  • 29
    • 0342296500 scopus 로고
    • Tentatives de régénération du coenzyme NADH par réduction électrochimique et hydrogénation catalytique
    • Bergel, A., Durliat, H. and Comtat, M., Tentatives de régénération du coenzyme NADH par réduction électrochimique et hydrogénation catalytique. J. Chim. Phys. Pcb., 1987, 84, 593-598.
    • (1987) J. Chim. Phys. Pcb , vol.84 , pp. 593-598
    • Bergel, A.1    Durliat, H.2    Comtat, M.3
  • 30
    • 0012025444 scopus 로고
    • Thin-layer spectroelectrochemical study of the reversible reaction between nicotinamide adenine dinucleotide and flavin adenine dinucleotide
    • Bergel, A. and Comtat, M., Thin-layer spectroelectrochemical study of the reversible reaction between nicotinamide adenine dinucleotide and flavin adenine dinucleotide. J. Electroanal. Chem. Interfacial Electrochem., 1991, 302, 219-231.
    • (1991) J. Electroanal. Chem. Interfacial Electrochem , vol.302 , pp. 219-231
    • Bergel, A.1    Comtat, M.2
  • 31
    • 0042933788 scopus 로고    scopus 로고
    • Recent developments in pyridine nucleotide regeneration
    • van der Donk, W. A. and Zhao, H., Recent developments in pyridine nucleotide regeneration. Curr. Opin. Biotechnol., 2003, 14, 421-426.
    • (2003) Curr. Opin. Biotechnol , vol.14 , pp. 421-426
    • van der Donk, W.A.1    Zhao, H.2
  • 32
    • 33847153497 scopus 로고    scopus 로고
    • Electrochemical regeneration of NADH using conductive vanadia-silica xerogels
    • Siu, E., Won, K. and Park, C. B., Electrochemical regeneration of NADH using conductive vanadia-silica xerogels. Biotechnol. Prog., 2007, 23, 293-296.
    • (2007) Biotechnol. Prog , vol.23 , pp. 293-296
    • Siu, E.1    Won, K.2    Park, C.B.3
  • 33
    • 0000676612 scopus 로고
    • Enzyme-catalyzed organic synthesis: electrochemical regeneration of NAD(P)H from NAD(P) using methyl viologen and flavoenzymes
    • DiCosimo, R., Wong, C. H., Daniels, L. and Whitesides, G. M., Enzyme-catalyzed organic synthesis: electrochemical regeneration of NAD(P)H from NAD(P) using methyl viologen and flavoenzymes. J. Org. Chem., 1981, 46, 4622-4623.
    • (1981) J. Org. Chem , vol.46 , pp. 4622-4623
    • DiCosimo, R.1    Wong, C.H.2    Daniels, L.3    Whitesides, G.M.4
  • 34
    • 0001100154 scopus 로고
    • Spectroelectrochemical study of indirect reduction of triphosphopyridine nucleotide: I. Methyl viologen, ferredoxin-TPN-reductase and TPN
    • Ito, M. and Kuwana, T., Spectroelectrochemical study of indirect reduction of triphosphopyridine nucleotide: I. Methyl viologen, ferredoxin-TPN-reductase and TPN. J. Electroanal. Chem. Interfacial Electrochem., 1971, 32, 415-425.
    • (1971) J. Electroanal. Chem. Interfacial Electrochem , vol.32 , pp. 415-425
    • Ito, M.1    Kuwana, T.2
  • 35
    • 84897975892 scopus 로고    scopus 로고
    • Mediators suitable for the electrochemical regeneration of NADH, NADPH or analogs thereof
    • EP Patent 0,667,397
    • Corey, P. F. and Musho, M. K., Mediators suitable for the electrochemical regeneration of NADH, NADPH or analogs thereof. EP Patent 0,667,397, 2001.
    • (2001)
    • Corey, P.F.1    Musho, M.K.2
  • 36
    • 0035471221 scopus 로고    scopus 로고
    • Surface modified electrodes for NADH oxidation in oxidoreductase-catalysed synthesis
    • Délécouls-Servat, K., Bergel, A. and Bassèguy, R., Surface modified electrodes for NADH oxidation in oxidoreductase-catalysed synthesis. J. Appl. Electrochem., 2001, 31, 1095-1101.
    • (2001) J. Appl. Electrochem , vol.31 , pp. 1095-1101
    • Délécouls-Servat, K.1    Bergel, A.2    Bassèguy, R.3
  • 37
    • 0020798109 scopus 로고
    • Modified glassy carbon electrode with immobilized enzyme: NAD/NADH lactic dehydrogenase
    • Laval, J. M. and Bourdillon, C., Modified glassy carbon electrode with immobilized enzyme: NAD/NADH lactic dehydrogenase. J. Electroanal. Chem. Interfacial Electrochem., 1983, 152, 125-141.
    • (1983) J. Electroanal. Chem. Interfacial Electrochem , vol.152 , pp. 125-141
    • Laval, J.M.1    Bourdillon, C.2
  • 38
    • 0037451066 scopus 로고    scopus 로고
    • Transition metal catalyzed regeneration of nicotinamide coenzymes with hydrogen
    • Wagenknecht, P. S., Penney, J. M. and Hembre, R. T., Transition metal catalyzed regeneration of nicotinamide coenzymes with hydrogen. Organometallics, 2003, 22, 1180-1182.
    • (2003) Organometallics , vol.22 , pp. 1180-1182
    • Wagenknecht, P.S.1    Penney, J.M.2    Hembre, R.T.3
  • 39
    • 0032567185 scopus 로고    scopus 로고
    • Coupling of catalyses by carbonyl clusters and dehydrogenases: reduction of pyruvate to l-lactate by dihydrogen
    • Bhaduri, S., Mathur, P., Payra, P. and Sharma, K., Coupling of catalyses by carbonyl clusters and dehydrogenases: reduction of pyruvate to l-lactate by dihydrogen. J. Am. Chem. Soc., 1998, 120, 12127-12128.
    • (1998) J. Am. Chem. Soc , vol.120 , pp. 12127-12128
    • Bhaduri, S.1    Mathur, P.2    Payra, P.3    Sharma, K.4
  • 40
    • 0024713851 scopus 로고
    • Enzyme catalysed biotransformations through photochemical regeneration of nicotinamide cofactors
    • Willner, I. and Mandler, D., Enzyme catalysed biotransformations through photochemical regeneration of nicotinamide cofactors. Enzyme Microb. Technol., 1989, 11, 467-483.
    • (1989) Enzyme Microb. Technol , vol.11 , pp. 467-483
    • Willner, I.1    Mandler, D.2
  • 41
    • 84989738071 scopus 로고
    • + cofactors by photosensitized electron transfer
    • + cofactors by photosensitized electron transfer. Photochem. Photobiol., 1982, 36, 283-290.
    • (1982) Photochem. Photobiol , vol.36 , pp. 283-290
    • Julliard, M.1    Le Petit, J.2
  • 42
    • 0022929361 scopus 로고
    • + cofactor by photosensitized electron transfer in an immobilized alcohol dehydrogenase system
    • + cofactor by photosensitized electron transfer in an immobilized alcohol dehydrogenase system. Biotechnol. Bioeng., 1986, 28, 1774-1779.
    • (1986) Biotechnol. Bioeng , vol.28 , pp. 1774-1779
    • Julliard, M.1    Le Petit, J.2    Ritz, P.3
  • 44
    • 0037084327 scopus 로고    scopus 로고
    • Highly enantioselective preparation of multifunctionalized propargylic building blocks
    • Schubert, T., Hummel, W. and Müller, M., Highly enantioselective preparation of multifunctionalized propargylic building blocks. Angew. Chem., Int. Ed. Engl., 2002, 41, 634-637.
    • (2002) Angew. Chem., Int. Ed. Engl , vol.41 , pp. 634-637
    • Schubert, T.1    Hummel, W.2    Müller, M.3
  • 45
    • 34948832633 scopus 로고    scopus 로고
    • Highly efficient asymmetric reduction of arylpropionic aldehydes by horse liver alcohol dehydrogenase through dynamic kinetic resolution
    • Giacomini, D., Galletti, P., Quintavalla, A., Gucciardo. G. and Paradisi, F., Highly efficient asymmetric reduction of arylpropionic aldehydes by horse liver alcohol dehydrogenase through dynamic kinetic resolution. Chem. Commun., 2007, 4038-4040.
    • (2007) Chem. Commun , pp. 4038-4040
    • Giacomini, D.1    Galletti, P.2    Quintavalla, A.3    Gucciardo, G.4    Paradisi, F.5
  • 46
    • 33847087242 scopus 로고
    • Enzyme catalyzed organic synthesis: NADH regeneration by using formate dehydrogenase
    • Shaked, Z. and Whitesides, G. M., Enzyme catalyzed organic synthesis: NADH regeneration by using formate dehydrogenase. J. Am. Chem. Soc., 1980, 102, 7104-7105.
    • (1980) J. Am. Chem. Soc , vol.102 , pp. 7104-7105
    • Shaked, Z.1    Whitesides, G.M.2
  • 47
    • 77954251837 scopus 로고    scopus 로고
    • Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds
    • Weckbecker, A., Gröger, H. and Hummel, W., Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. Biosyst. Eng., I, 2010, 195-242.
    • (2010) Biosyst. Eng. I , pp. 195-242
    • Weckbecker, A.1    Gröger, H.2    Hummel, W.3
  • 48
    • 84898017635 scopus 로고    scopus 로고
    • Coupled cofactor dependent enzymatic reaction systems in aqueous media
    • EP Patent 1,606,412
    • Groeger, H. et al., Coupled cofactor dependent enzymatic reaction systems in aqueous media. EP Patent 1,606,412, 2005.
    • (2005)
    • Groeger, H.1
  • 49
    • 0022076889 scopus 로고
    • Enzymatic vs fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis
    • Wong, C., Drueckhammer, D. G. and Sweers, H. M., Enzymatic vs fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J. Am. Chem. Soc., 1985, 107, 4028-4031.
    • (1985) J. Am. Chem. Soc , vol.107 , pp. 4028-4031
    • Wong, C.1    Drueckhammer, D.G.2    Sweers, H.M.3
  • 50
    • 0000999905 scopus 로고
    • Enzyme catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides
    • Wong, C. H. and Whitesides, G. M., Enzyme catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc., 1981, 103, 4890- 4899.
    • (1981) J. Am. Chem. Soc , vol.103 , pp. 4890-4899
    • Wong, C.H.1    Whitesides, G.M.2
  • 51
    • 37049119309 scopus 로고
    • Preparative scale reductions of cyclic ketones and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD
    • Jones, J. B., Sneddon, D. W., Higgins, W. and Lewis, A. J., Preparative scale reductions of cyclic ketones and aldehyde substrates of horse liver alcohol dehydrogenase with in situ sodium dithionite recycling of catalytic amounts of NAD. J. Chem. Soc., Chem. Commun., 1972, 856-857.
    • (1972) J. Chem. Soc., Chem. Commun , pp. 856-857
    • Jones, J.B.1    Sneddon, D.W.2    Higgins, W.3    Lewis, A.J.4
  • 52
    • 0001389862 scopus 로고
    • Enzyme catalysed organic synthesis: NAD(P)H regeneration using dihydrogen and the hydrogenase from Methanobacterium thermoautotrophicum
    • Wong, C. H., Daniels, L., Orme-Johnson, W. H. and Whitesides, G. M., Enzyme catalysed organic synthesis: NAD(P)H regeneration using dihydrogen and the hydrogenase from Methanobacterium thermoautotrophicum. J. Am. Chem. Soc., 1981, 103, 6227- 6228.
    • (1981) J. Am. Chem. Soc , vol.103 , pp. 6227-6228
    • Wong, C.H.1    Daniels, L.2    Orme-Johnson, W.H.3    Whitesides, G.M.4
  • 53
    • 0024851477 scopus 로고
    • Lactate dehydrogenase catalyzed regeneration of NAD from NADH for use in enzyme catalyzed synthesis
    • Chenault, H. K. and Whitesides, G. M., Lactate dehydrogenase catalyzed regeneration of NAD from NADH for use in enzyme catalyzed synthesis. Bioorg. Chem., 1989, 17, 400-409.
    • (1989) Bioorg. Chem , vol.17 , pp. 400-409
    • Chenault, H.K.1    Whitesides, G.M.2
  • 54
    • 4644257598 scopus 로고    scopus 로고
    • An enzymatic process to α -ketoglutarate from l-glutamate: the coupled system l-glutamate dehydrogenase/NADH oxidase
    • Ödman, P., Wellborn, W. B. and Bommarius, A. S., An enzymatic process to α -ketoglutarate from l-glutamate: the coupled system l-glutamate dehydrogenase/NADH oxidase. Tetrahedron: Asymmetry, 2004, 15, 2933-2937.
    • (2004) Tetrahedron: Asymmetry , vol.15 , pp. 2933-2937
    • Ödman, P.1    Wellborn, W.B.2    Bommarius, A.S.3
  • 56
    • 84897981299 scopus 로고    scopus 로고
    • Use of malate dehydrogenase for NADH regeneration
    • WO Patent 2,004,022,764
    • Náamnieh, S., Hummel, W. and Gröger, H., Use of malate dehydrogenase for NADH regeneration. WO Patent 2,004,022,764, 2004.
    • (2004)
    • Náamnieh, S.1    Hummel, W.2    Gröger, H.3
  • 57
    • 84897985566 scopus 로고    scopus 로고
    • Method for producing primary alcohols by reducing aldehydes using an alcohol dehydrogenase for a coupled cofactor regeneration
    • EP Patent 1,784,495
    • Gröger, H., Chamouleau, F. and Hagedorn, C., Method for producing primary alcohols by reducing aldehydes using an alcohol dehydrogenase for a coupled cofactor regeneration. EP Patent 1,784,495, 2007.
    • (2007)
    • Gröger, H.1    Chamouleau, F.2    Hagedorn, C.3
  • 58
    • 85012035225 scopus 로고    scopus 로고
    • Synthesis of ethyl (3R, 5S)-dihydroxy-6-benzyloxy hexanote
    • WO Patent 2,011,066,755
    • Chen, Y. and Wu, X., Synthesis of ethyl (3R, 5S)-dihydroxy-6-benzyloxy hexanote. WO Patent 2,011,066,755, 2011.
    • (2011)
    • Chen, Y.1    Wu, X.2
  • 59
    • 84876433914 scopus 로고    scopus 로고
    • Effects of NADH availability on the Klebsiella pneumoniae strain with 1, 3-propanediol operon over-expression
    • Ma, Z., Shentu, X., Bian, Y. and Yu, X., Effects of NADH availability on the Klebsiella pneumoniae strain with 1, 3-propanediol operon over-expression. J. Basic Microbiol., 2013, 53, 348-354.
    • (2013) J. Basic Microbiol , vol.53 , pp. 348-354
    • Ma, Z.1    Shentu, X.2    Bian, Y.3    Yu, X.4
  • 61
    • 84863109657 scopus 로고    scopus 로고
    • Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering
    • Wang, Z., Gao, C., Wang, Q., Liang, Q. and Qi, Q., Production of pyruvate in Saccharomyces cerevisiae through adaptive evolution and rational cofactor metabolic engineering. Biochem. Eng. J., 2012, 67, 126-131.
    • (2012) Biochem. Eng. J , vol.67 , pp. 126-131
    • Wang, Z.1    Gao, C.2    Wang, Q.3    Liang, Q.4    Qi, Q.5
  • 62
    • 78751476638 scopus 로고    scopus 로고
    • 450-dependent propane biotransformations using engineered Escherichia coli
    • 450-dependent propane biotransformations using engineered Escherichia coli. Biotechnol. Bioeng., 2011, 108, 500-510.
    • (2011) Biotechnol. Bioeng , vol.108 , pp. 500-510
    • Fasan, R.1
  • 63
    • 79955164750 scopus 로고    scopus 로고
    • Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
    • Bastian, S., Liu, X., Meyerowitz, J. T., Snow, C. D., Chen, M. M. and Arnold, F. H., Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab. Eng., 2011, 13, 345-352.
    • (2011) Metab. Eng , vol.13 , pp. 345-352
    • Bastian, S.1    Liu, X.2    Meyerowitz, J.T.3    Snow, C.D.4    Chen, M.M.5    Arnold, F.H.6
  • 64
    • 66749091546 scopus 로고    scopus 로고
    • Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerev isiae
    • Bengtsson, O., Hahn-Hägerdal, B. and Gorwa-Grauslund, M. F., Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerev isiae. Biotechnol. Biofuels, 2009, 2, 122.
    • (2009) Biotechnol. Biofuels , vol.2 , pp. 122
    • Bengtsson, O.1    Hahn-Hägerdal, B.2    Gorwa-Grauslund, M.F.3
  • 66
    • 33744496331 scopus 로고    scopus 로고
    • Optimizing a biocatalyst for improved NAD(P)H regeneration: directed evolution of phosphite dehydrogenase
    • Woodyer, R., van der Donk, W. A. and Zhao, H., Optimizing a biocatalyst for improved NAD(P)H regeneration: directed evolution of phosphite dehydrogenase. Comb. Chem. High Throughput Screen., 2006, 9, 237-245.
    • (2006) Comb. Chem. High Throughput Screen , vol.9 , pp. 237-245
    • Woodyer, R.1    van der Donk, W.A.2    Zhao, H.3
  • 67
    • 84897990422 scopus 로고    scopus 로고
    • Phosphite dehydrogenase mutants for nicotinamide cofactor regeneration
    • EP Patent 1,636,353
    • Zhao, H., Woodyer, R., Metcalf, W. and van der Donk, W. A., Phosphite dehydrogenase mutants for nicotinamide cofactor regeneration. EP Patent 1,636,353, 2006.
    • (2006)
    • Zhao, H.1    Woodyer, R.2    Metcalf, W.3    van der Donk, W.A.4
  • 68
    • 0034466694 scopus 로고    scopus 로고
    • Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone
    • Boonstra, B., Rathbone, D. A., French, C. E., Walker, E. H. and Bruce, N. C., Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl. Environ. Microbiol., 2000, 66, 5161-5166.
    • (2000) Appl. Environ. Microbiol , vol.66 , pp. 5161-5166
    • Boonstra, B.1    Rathbone, D.A.2    French, C.E.3    Walker, E.H.4    Bruce, N.C.5
  • 69
    • 84897986599 scopus 로고    scopus 로고
    • Enzymatic cofactor cycling using soluble pyridine nucleotide transhydrogenase
    • EP Patent 0,939,799
    • Bruce, N. C. and French, C. E., Enzymatic cofactor cycling using soluble pyridine nucleotide transhydrogenase. 2005, EP Patent 0,939,799.
    • (2005)
    • Bruce, N.C.1    French, C.E.2
  • 70
    • 0031877248 scopus 로고    scopus 로고
    • Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase
    • de Felipe, F. L., Kleerebezem, M., de Vos, W. M. and Hugenholtz, J., Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol., 1998, 180, 3804-3808.
    • (1998) J. Bacteriol , vol.180 , pp. 3804-3808
    • de Felipe, F.L.1    Kleerebezem, M.2    de Vos, W.M.3    Hugenholtz, J.4
  • 71
    • 68049137324 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
    • Hou, J., Lages, N. F., Oldiges, M. and Vemuri, G. N., Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab. Eng., 2009, 11, 253-261.
    • (2009) Metab. Eng , vol.11 , pp. 253-261
    • Hou, J.1    Lages, N.F.2    Oldiges, M.3    Vemuri, G.N.4
  • 72
    • 0036663620 scopus 로고    scopus 로고
    • The effect of NAPRTase overexpression on the total levels of NAD, The NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli
    • Berríos-Rivera, S. J., San, K. Y. and Bennett, G. N., The effect of NAPRTase overexpression on the total levels of NAD, The NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metab. Eng., 2002, 4, 238-247.
    • (2002) Metab. Eng , vol.4 , pp. 238-247
    • Berríos-Rivera, S.J.1    San, K.Y.2    Bennett, G.N.3
  • 73
    • 76749151341 scopus 로고    scopus 로고
    • Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering
    • Chemler, J. A., Fowler, Z. L., McHugh, K. P. and Koffas, M. A., Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab. Eng., 2010, 12, 96-104.
    • (2010) Metab. Eng , vol.12 , pp. 96-104
    • Chemler, J.A.1    Fowler, Z.L.2    McHugh, K.P.3    Koffas, M.A.4
  • 74
    • 79954575678 scopus 로고    scopus 로고
    • Immobilization of Kluyveromyces lactis β -galactosidase on concanavalin A layered aluminium oxide nanoparticles - its future aspects in biosensor applications
    • Ansari, S. A. and Husain, Q., Immobilization of Kluyveromyces lactis β -galactosidase on concanavalin A layered aluminium oxide nanoparticles - its future aspects in biosensor applications. J. Mol. Catal. B: Enzym., 2011, 70, 119-126.
    • (2011) J. Mol. Catal. B: Enzym , vol.70 , pp. 119-126
    • Ansari, S.A.1    Husain, Q.2
  • 76
    • 13644250281 scopus 로고    scopus 로고
    • Examination of cholesterol oxidase attachment to magnetic nanoparticles
    • Kouassi, G. K., Irudayaraj, J. and McCarty, G., Examination of cholesterol oxidase attachment to magnetic nanoparticles. J. Nanobiotechnol., 2005, 3, 1.
    • (2005) J. Nanobiotechnol , vol.3 , pp. 1
    • Kouassi, G.K.1    Irudayaraj, J.2    McCarty, G.3
  • 77
    • 64649096755 scopus 로고    scopus 로고
    • Immobilization of α -amylase onto cellulose coated magnetite (CCM) nanoparticles and preliminary starch degradation study
    • Namdeo, M. and Bajpai, S. K., Immobilization of α -amylase onto cellulose coated magnetite (CCM) nanoparticles and preliminary starch degradation study. J. Mol. Catal. B: Enzym., 2009, 59, 134- 139.
    • (2009) J. Mol. Catal. B: Enzym , vol.59 , pp. 134-139
    • Namdeo, M.1    Bajpai, S.K.2
  • 78
    • 3342986578 scopus 로고    scopus 로고
    • Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor
    • Zhang, F. et al., Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal. Chim. Acta, 2004, 519, 155- 160.
    • (2004) Anal. Chim. Acta , vol.519 , pp. 155-160
    • Zhang, F.1
  • 79
    • 78650681129 scopus 로고    scopus 로고
    • Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle supported multienzyme system with in situ cofactor regeneration
    • Zhang, Y., Gao, F., Zhang, S. P., Su, Z. G., Ma, G. H. and Wang, P., Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle supported multienzyme system with in situ cofactor regeneration. Bioresour. Technol., 2011, 102, 1837-1843.
    • (2011) Bioresour. Technol , vol.102 , pp. 1837-1843
    • Zhang, Y.1    Gao, F.2    Zhang, S.P.3    Su, Z.G.4    Ma, G.H.5    Wang, P.6
  • 80
    • 0037684773 scopus 로고    scopus 로고
    • An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration
    • Mak, K. K., Wollenberger, U., Scheller, F. W. and Renneberg, R., An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration. Biosens. Bioelectron., 2003, 18, 1095-1100.
    • (2003) Biosens. Bioelectron , vol.18 , pp. 1095-1100
    • Mak, K.K.1    Wollenberger, U.2    Scheller, F.W.3    Renneberg, R.4
  • 81
    • 2442564314 scopus 로고    scopus 로고
    • Amperometric determination of lactate with novel trienzyme/poly (carbamoyl) sulfonate hydrogel based sensor
    • Kwan, R. C., Hon, P. Y., Mak, K. K. and Renneberg, R., Amperometric determination of lactate with novel trienzyme/poly (carbamoyl) sulfonate hydrogel based sensor. Biosens. Bioelectron., 2004, 19, 1745-1752.
    • (2004) Biosens. Bioelectron , vol.19 , pp. 1745-1752
    • Kwan, R.C.1    Hon, P.Y.2    Mak, K.K.3    Renneberg, R.4
  • 82
    • 58149293417 scopus 로고    scopus 로고
    • Regeneration of the nicotinamide cofactor using a mediator free electrochemical method with a tin oxide electrode
    • Kim, Y. H. and Yoo, Y. J., Regeneration of the nicotinamide cofactor using a mediator free electrochemical method with a tin oxide electrode. Enzyme Microb. Technol., 2009, 44, 129- 134.
    • (2009) Enzyme Microb. Technol , vol.44 , pp. 129-134
    • Kim, Y.H.1    Yoo, Y.J.2
  • 84
    • 3242707991 scopus 로고    scopus 로고
    • Direct regeneration of NADH on a ruthenium modified glassy carbon electrode
    • Azem, A., Man, F. and Omanovic, S., Direct regeneration of NADH on a ruthenium modified glassy carbon electrode. J. Mol. Catal. A: Chem., 2004, 219, 283-299.
    • (2004) J. Mol. Catal. A: Chem , vol.219 , pp. 283-299
    • Azem, A.1    Man, F.2    Omanovic, S.3
  • 85
    • 84858622387 scopus 로고    scopus 로고
    • Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nanopatterned glassy carbon/Pt and glassy carbon/Ni electrodes
    • Ali, I., Gill, A. and Omanovic, S., Direct electrochemical regeneration of the enzymatic cofactor 1,4-NADH employing nanopatterned glassy carbon/Pt and glassy carbon/Ni electrodes. Chem. Eng. J., 2012, 188, 173-180.
    • (2012) Chem. Eng. J , vol.188 , pp. 173-180
    • Ali, I.1    Gill, A.2    Omanovic, S.3
  • 86
    • 34250648032 scopus 로고    scopus 로고
    • Electroenzymatic synthesis of chiral alcohols in an aqueous organic two-phase system
    • Hildebrand, F. and Lütz, S., Electroenzymatic synthesis of chiral alcohols in an aqueous organic two-phase system. Tetrahedron: Asymmetry, 2007, 18, 1187-1193.
    • (2007) Tetrahedron: Asymmetry , vol.18 , pp. 1187-1193
    • Hildebrand, F.1    Lütz, S.2
  • 87
    • 84897968563 scopus 로고    scopus 로고
    • Method comprising the indirect electrochemical regeneration of NAD(P)H
    • Google Patents
    • Schmid, A., Hollmann, F., Hauer, B., and Zelinski, T., Method comprising the indirect electrochemical regeneration of NAD(P)H. Google Patents, 2006.
    • (2006)
    • Schmid, A.1    Hollmann, F.2    Hauer, B.3    Zelinski, T.4
  • 88
    • 0037448512 scopus 로고    scopus 로고
    • + regeneration using 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator
    • + regeneration using 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator. J. Electroanal. Chem., 2003, 541, 109- 115.
    • (2003) J. Electroanal. Chem , vol.541 , pp. 109-115
    • Schröder, I.1    Steckhan, E.2    Liese, A.3
  • 89
    • 79954593169 scopus 로고    scopus 로고
    • Biocatalytic process optimization based on mechanistic modeling of cholic acid oxidation with cofactor regeneration
    • Braun, M., Link, H., Liu, L., Schmid, R. D. and Weuster-Botz, D., Biocatalytic process optimization based on mechanistic modeling of cholic acid oxidation with cofactor regeneration. Biotechnol. Bioeng., 2011, 108, 1307-1317.
    • (2011) Biotechnol. Bioeng , vol.108 , pp. 1307-1317
    • Braun, M.1    Link, H.2    Liu, L.3    Schmid, R.D.4    Weuster-Botz, D.5
  • 91
    • 57049150799 scopus 로고    scopus 로고
    • Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways
    • Martínez, I., Zhu, J., Lin, H., Bennett, G. N. and San, K. Y., Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab. Eng., 2008, 10, 352-359.
    • (2008) Metab. Eng , vol.10 , pp. 352-359
    • Martínez, I.1    Zhu, J.2    Lin, H.3    Bennett, G.N.4    San, K.Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.