메뉴 건너뛰기




Volumn 18, Issue 3, 2014, Pages 167-183

Influenza a immunomics and public health omics: The dynamic pathway interplay in host response to H1N1 infection

Author keywords

[No Author keywords available]

Indexed keywords

B LYMPHOCYTE RECEPTOR; CHEMOKINE; CYTOKINE;

EID: 84896880604     PISSN: 15362310     EISSN: 15578100     Source Type: Journal    
DOI: 10.1089/omi.2013.0062     Document Type: Article
Times cited : (12)

References (63)
  • 1
    • 70449375094 scopus 로고    scopus 로고
    • Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics
    • Aijö T, and Lähdesmäki H. (2009). Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 25, 2937-2944.
    • (2009) Bioinformatics , vol.25 , pp. 2937-2944
    • Aijö, T.1    Lähdesmäki, H.2
  • 2
    • 77954484005 scopus 로고    scopus 로고
    • Revealing differences in gene network inference algorithms on the network level by ensemble methods
    • Altay G, and Emmert-Streib F. (2010). Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 26, 1738-1744.
    • (2010) Bioinformatics , vol.26 , pp. 1738-1744
    • Altay, G.1    Emmert-Streib, F.2
  • 3
    • 77953397764 scopus 로고    scopus 로고
    • Systems medicine: The future of medical genomics and healthcare
    • Auffray C, Chen Z, and Hood L. (2009). Systems medicine: The future of medical genomics and healthcare. Genome Med 1, 2.
    • (2009) Genome Med , vol.1 , pp. 2
    • Auffray, C.1    Chen, Z.2    Hood, L.3
  • 5
    • 77955860573 scopus 로고    scopus 로고
    • PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections
    • Bassaganya-Riera J, Song R, Roberts PC, and Hontecillas R. (2010). PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol 23, 343-352.
    • (2010) Viral Immunol , vol.23 , pp. 343-352
    • Bassaganya-Riera, J.1    Song, R.2    Roberts, P.C.3    Hontecillas, R.4
  • 6
    • 80052731944 scopus 로고    scopus 로고
    • Systems vaccinomics: The road ahead for vaccinology
    • Bernstein A, Pulendran B, and Rappuoli R. (2011). Systems vaccinomics: The road ahead for vaccinology. OMICS 15, 529-531.
    • (2011) OMICS , vol.15 , pp. 529-531
    • Bernstein, A.1    Pulendran, B.2    Rappuoli, R.3
  • 7
    • 64549104807 scopus 로고    scopus 로고
    • ClueGO: A Cy-toscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks
    • Bindea G, Mlecnik B, Hackl H, et al. (2009). ClueGO: A Cy-toscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091-1093.
    • (2009) Bioinformatics , vol.25 , pp. 1091-1093
    • Bindea, G.1    Mlecnik, B.2    Hackl, H.3
  • 8
    • 33747813561 scopus 로고    scopus 로고
    • The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo
    • Bonneau R, Reiss DJ, Shannon P, et al. (2006). The Inferelator: An algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7, R36.
    • (2006) Genome Biol , vol.7
    • Bonneau, R.1    Reiss, D.J.2    Shannon, P.3
  • 9
    • 33746642628 scopus 로고    scopus 로고
    • From functional genomics to functional immunomics: New challenges, old problems, big rewards
    • Braga-Neto UM, and Marques ET Jr. (2006). From functional genomics to functional immunomics: New challenges, old problems, big rewards. PLoS Comput Biol 2, e81.
    • (2006) PLoS Comput Biol , vol.2
    • Braga-Neto, U.M.1    Marques Jr., E.T.2
  • 10
    • 63049128934 scopus 로고    scopus 로고
    • A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches
    • Cantone I, Marucci L, Iorio F, et al. (2009). A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137, 172-181.
    • (2009) Cell , vol.137 , pp. 172-181
    • Cantone, I.1    Marucci, L.2    Iorio, F.3
  • 11
    • 33645356185 scopus 로고    scopus 로고
    • Immunomics: Discovering new targets for vaccines and therapeutics
    • De Groot AS. (2006). Immunomics: Discovering new targets for vaccines and therapeutics. Drug Discov Today 11, 203-209.
    • (2006) Drug Discov Today , vol.11 , pp. 203-209
    • De Groot, A.S.1
  • 13
    • 84873074998 scopus 로고    scopus 로고
    • Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection
    • Dimitrakopoulou K, Tsimpouris C, Papadopoulos G, et al. (2011). Dynamic gene network reconstruction from gene expression data in mice after influenza A (H1N1) infection. J Clin Bioinforma 1, 27.
    • (2011) J Clin Bioinforma , vol.1 , pp. 27
    • Dimitrakopoulou, K.1    Tsimpouris, C.2    Papadopoulos, G.3
  • 14
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • DOI 10.1126/science.1081900
    • Gardner TS, di Bernardo D, Lorenz D, and Collins JJ. (2003). Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102-105. (Pubitemid 36801571)
    • (2003) Science , vol.301 , Issue.5629 , pp. 102-105
    • Gardner, T.S.1    Di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 15
    • 68149131315 scopus 로고    scopus 로고
    • Assessing the severity of the novel influenza A/H1N1 pandemic
    • Garske T, Legrand J, Donnelly CA, et al. (2009). Assessing the severity of the novel influenza A/H1N1 pandemic. BMJ 339, b2840.
    • (2009) BMJ , vol.339
    • Garske, T.1    Legrand, J.2    Donnelly, C.A.3
  • 16
    • 28744458859 scopus 로고    scopus 로고
    • Bio-conductor: Open software development for computational biology and bioinformatics
    • Gentleman RC, Carey VJ, Bates DM, et al. (2004). Bio-conductor: Open software development for computational biology and bioinformatics. Genome Biol 5, R80.
    • (2004) Genome Biol , vol.5
    • Gentleman, R.C.1    Carey, V.J.2    Bates, D.M.3
  • 17
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • DOI 10.1093/bioinformatics/bti226
    • Guthke R, Möller U, Hoffmann M, Thies F, and Töpfer S. (2005). Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 21, 1626-1634. (Pubitemid 40542721)
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1626-1634
    • Guthke, R.1    Moller, U.2    Hoffman, M.3    Thies, F.4    Topfer, S.5
  • 18
    • 72849119863 scopus 로고    scopus 로고
    • Towards a quantitative understanding of the within-host dynamics of influenza A infections
    • Handel A, Longini IM Jr, and Antia R. (2010). Towards a quantitative understanding of the within-host dynamics of influenza A infections. J R Soc Interface 7, 35-47.
    • (2010) J R Soc Interface , vol.7 , pp. 35-47
    • Handel, A.1    Longini Jr., I.M.2    Antia, R.3
  • 19
    • 78649403748 scopus 로고    scopus 로고
    • Influenza A virus replication induces cell cycle arrest in G0/G1 phase
    • He Y, Xu K, Keiner B, et al. (2010). Influenza A virus replication induces cell cycle arrest in G0/G1 phase. J Virol 84, 12832-12840.
    • (2010) J Virol , vol.84 , pp. 12832-12840
    • He, Y.1    Xu, K.2    Keiner, B.3
  • 20
    • 50949084896 scopus 로고    scopus 로고
    • Geometric interpretation of gene coexpression network analysis
    • Horvath S, and Dong J. (2008). Geometric interpretation of gene coexpression network analysis. PLoS Comput Biol 4, e1000117.
    • (2008) PLoS Comput Biol , vol.4
    • Horvath, S.1    Dong, J.2
  • 21
    • 61449172037 scopus 로고    scopus 로고
    • Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources
    • Huang DW, Sherman BT, and Lempicki RA. (2009). Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc 4, 44-57.
    • (2009) Nature Protoc , vol.4 , pp. 44-57
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 22
    • 77956625295 scopus 로고    scopus 로고
    • Adaptation of pandemic H1N1 influenza viruses in mice
    • Ilyushina NA, Khalenkov AM, Seiler JP, et al. (2010). Adaptation of pandemic H1N1 influenza viruses in mice. J Virol 84, 8607-8616.
    • (2010) J Virol , vol.84 , pp. 8607-8616
    • Ilyushina, N.A.1    Khalenkov, A.M.2    Seiler, J.P.3
  • 23
    • 34648840585 scopus 로고    scopus 로고
    • Cluster-based network model for time-course gene expression data
    • Inoue LY, Neira M, Nelson C, Gleave M, and Etzioni R. (2007).Cluster-based network model for time-course gene expression data. Biostatistics 8, 507-525.
    • (2007) Biostatistics , vol.8 , pp. 507-525
    • Inoue, L.Y.1    Neira, M.2    Nelson, C.3    Gleave, M.4    Etzioni, R.5
  • 24
    • 75849128795 scopus 로고    scopus 로고
    • A circadian clock in macrophages controls inflammatory immune responses
    • Keller M, Mazuch J, Abraham U, et al. (2009). A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci USA 106, 21407-21412.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 21407-21412
    • Keller, M.1    Mazuch, J.2    Abraham, U.3
  • 25
    • 41449085571 scopus 로고    scopus 로고
    • Eigengene networks for studying the relationships between co-expression modules
    • Langfelder P, and Horvath S. (2007). Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 1, 54.
    • (2007) BMC Syst Biol , vol.1 , pp. 54
    • Langfelder, P.1    Horvath, S.2
  • 26
    • 32544433476 scopus 로고    scopus 로고
    • EDGE: Extraction and analysis of differential gene expression
    • DOI 10.1093/bioinformatics/btk005
    • Leek JT, Monsen E, Dabney AR, and Storey JD. (2006). EDGE: Extraction and analysis of differential gene expression. Bioinformatics 22, 507-508. (Pubitemid 43231431)
    • (2006) Bioinformatics , vol.22 , Issue.4 , pp. 507-508
    • Leek, J.T.1    Monsen, E.2    Dabney, A.R.3    Storey, J.D.4
  • 27
    • 33645108505 scopus 로고    scopus 로고
    • Using a state-space model with hidden variables to infer transcription factor activities
    • Li Z, Shaw SM, Yedwabnick MJ, and Chan C. (2006). Using a state-space model with hidden variables to infer transcription factor activities. Bioinformatics 22, 747-754.
    • (2006) Bioinformatics , vol.22 , pp. 747-754
    • Li, Z.1    Shaw, S.M.2    Yedwabnick, M.J.3    Chan, C.4
  • 28
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data-A survey
    • Liao TW. (2005). Clustering of time series data-A survey. Pattern Recog 38, 1857-1874.
    • (2005) Pattern Recog , vol.38 , pp. 1857-1874
    • Liao, T.W.1
  • 29
    • 80052709811 scopus 로고    scopus 로고
    • Vaccinomics for the major blood feeding helminths of humans
    • Loukas A, Gaze S, Mulvenna JP, et al. (2011). Vaccinomics for the major blood feeding helminths of humans. OMICS 15, 567-577.
    • (2011) OMICS , vol.15 , pp. 567-577
    • Loukas, A.1    Gaze, S.2    Mulvenna, J.P.3
  • 30
    • 77951156119 scopus 로고    scopus 로고
    • Gene regulatory networks modelling using a dynamic evolutionary hybrid
    • Maraziotis IA, Dragomir A, and Thanos D. (2010). Gene regulatory networks modelling using a dynamic evolutionary hybrid. BMC Bioinformatics 11, 140.
    • (2010) BMC Bioinformatics , vol.11 , pp. 140
    • Maraziotis, I.A.1    Dragomir, A.2    Thanos, D.3
  • 31
    • 84870305264 scopus 로고    scopus 로고
    • Wisdom of crowds for robust gene network inference
    • Marbach D, Costello JC, Küffner R, et al. (2012). Wisdom of crowds for robust gene network inference. Nat Methods 9, 796-804.
    • (2012) Nat Methods , vol.9 , pp. 796-804
    • Marbach, D.1    Costello, J.C.2    Küffner, R.3
  • 33
    • 81055148319 scopus 로고    scopus 로고
    • Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems
    • McDermott JE, Shankaran H, Eisfeld AJ, et al. (2011). Conserved host response to highly pathogenic avian influenza virus infection in human cell culture, mouse and macaque model systems. BMC Syst Biol 5, 190.
    • (2011) BMC Syst Biol , vol.5 , pp. 190
    • McDermott, J.E.1    Shankaran, H.2    Eisfeld, A.J.3
  • 35
    • 15344348728 scopus 로고    scopus 로고
    • Clustering of unevenly sampled gene expression time-series data
    • DOI 10.1016/j.fss.2004.10.014, PII S0165011404004579, Fuzzy Sets and Systems
    • Möller-Levet CS, Klawonnb F, Choc KH, Yina H, and Wolk-enhauere O. (2005). Clustering of unevenly sampled gene expression time-series data. Fuzzy Sets Bioinformatics 152, 49-66. (Pubitemid 40391251)
    • (2005) Fuzzy Sets and Systems , vol.152 , Issue.1 , pp. 49-66
    • Moller-Levet, C.S.1    Klawonn, F.2    Cho, K.-H.3    Yin, H.4    Wolkenhauer, O.5
  • 36
    • 83755195791 scopus 로고    scopus 로고
    • P53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus
    • Munoz-Fontela C, Pazos M, Delgado I, et al. (2011). p53 serves as a host antiviral factor that enhances innate and adaptive immune responses to influenza A virus. J Immunol 187, 6428-6436.
    • (2011) J Immunol , vol.187 , pp. 6428-6436
    • Munoz-Fontela, C.1    Pazos, M.2    Delgado, I.3
  • 37
    • 77956412225 scopus 로고    scopus 로고
    • Granger causality analysis of human cell-cycle gene expression profiles
    • Nagarajan R, and Upreti M. (2010). Granger causality analysis of human cell-cycle gene expression profiles. Stat Appl Genet Mol Biol 9, 31.
    • (2010) Stat Appl Genet Mol Biol , vol.9 , pp. 31
    • Nagarajan, R.1    Upreti, M.2
  • 38
    • 84861853797 scopus 로고    scopus 로고
    • Interleukin-6 is a potential biomarker for severe pandemic H1N1 influenza A infection
    • Paquette SG, Banner D, Zhao Z, et al. (2012). Interleukin-6 is a potential biomarker for severe pandemic H1N1 influenza A infection. PLoS One 7, e38214.
    • (2012) PLoS One , vol.7
    • Paquette, S.G.1    Banner, D.2    Zhao, Z.3
  • 39
    • 79952395259 scopus 로고    scopus 로고
    • Aberrant cell cycle and apoptotic changes characterise severe influenza A infection-A meta-analysis of genomic signatures in circulating leukocytes
    • Parnell G, McLean A, Booth D, Huang S, Nalos M, and Tang B. (2011). Aberrant cell cycle and apoptotic changes characterise severe influenza A infection-A meta-analysis of genomic signatures in circulating leukocytes. PLoS One 6, e17186.
    • (2011) PLoS One , vol.6
    • Parnell, G.1    McLean, A.2    Booth, D.3    Huang, S.4    Nalos, M.5    Tang, B.6
  • 41
    • 84855254098 scopus 로고    scopus 로고
    • Vaccinomics and personalized vaccinology: Is science leading us toward a new path of directed vaccine development and discovery?
    • Poland GA, Kennedy RB, and Ovsyannikova IG. (2011). Vaccinomics and personalized vaccinology: Is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathog 7, e1002344.
    • (2011) PLoS Pathog , vol.7
    • Poland, G.A.1    Kennedy, R.B.2    Ovsyannikova, I.G.3
  • 42
    • 84864011948 scopus 로고    scopus 로고
    • Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses
    • Pommerenke C, Wilk E, Srivastava B, et al. (2012). Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses. PLoS One 7, e41169.
    • (2012) PLoS One , vol.7
    • Pommerenke, C.1    Wilk, E.2    Srivastava, B.3
  • 43
    • 77950487055 scopus 로고    scopus 로고
    • Dynamics of influenza virus infection and pathology
    • Saenz RA, Quinlivan M, Elton D, et al. (2010). Dynamics of influenza virus infection and pathology. J Virol 84, 3974-3983.
    • (2010) J Virol , vol.84 , pp. 3974-3983
    • Saenz, R.A.1    Quinlivan, M.2    Elton, D.3
  • 44
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • DOI 10.1093/bioinformatics/bti062
    • Schäfer J, and Strimmer K. (2005). An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754-764. (Pubitemid 40439411)
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 754-764
    • Schafer, J.1    Strimmer, K.2
  • 45
    • 84885896174 scopus 로고    scopus 로고
    • SYSGENET consortium, and Kas MJ. (2013). Controlling complexity: The clinical relevance of mouse complex genetics
    • Schughart K, Libert C, SYSGENET consortium, and Kas MJ. (2013). Controlling complexity: The clinical relevance of mouse complex genetics. Eur J Hum Genet 21, 1191-1196.
    • Eur J Hum Genet , vol.21 , pp. 1191-1196
    • Schughart, K.1    Libert, C.2
  • 46
    • 13844281356 scopus 로고    scopus 로고
    • A roadmap for the immunomics of category A-C pathogens
    • DOI 10.1016/j.immuni.2005.01.009
    • Sette A, Fleri W, Peters B, Sathiamurthy M, Bui HH, and Wilson S. (2005). A roadmap for the immunomics of category A-C pathogens. Immunity 22, 155-161. (Pubitemid 40255707)
    • (2005) Immunity , vol.22 , Issue.2 , pp. 155-161
    • Sette, A.1    Fleri, W.2    Peters, B.3    Sathiamurthy, M.4    Bui, H.-H.5    Wilson, S.6
  • 47
    • 84857191157 scopus 로고    scopus 로고
    • Circadian expression of clock genes in mouse mac-rophages, dendritic cells, and B cells
    • Silver AC, Arjona A, Hughes ME, Nitabach MN, and Fikrig E. (2012). Circadian expression of clock genes in mouse mac-rophages, dendritic cells, and B cells. Brain Behav Immun 26, 407-413.
    • (2012) Brain Behav Immun , vol.26 , pp. 407-413
    • Silver, A.C.1    Arjona, A.2    Hughes, M.E.3    Nitabach, M.N.4    Fikrig, E.5
  • 49
    • 84888434853 scopus 로고    scopus 로고
    • Immunological Genome Project and systems immunology
    • Shay T, and Kang J. (2013). Immunological Genome Project and systems immunology. Trends Immunol 43, 602-609.
    • (2013) Trends Immunol , vol.43 , pp. 602-609
    • Shay, T.1    Kang, J.2
  • 50
    • 66349133213 scopus 로고    scopus 로고
    • KELLER: Estimating time-varying interactions between genes
    • Song L, Kolar M, and Xing E. (2009a). KELLER: Estimating time-varying interactions between genes. Bioinformatics 25, i128-i136.
    • (2009) Bioinformatics , vol.25
    • Song, L.1    Kolar, M.2    Xing, E.3
  • 52
    • 36049034344 scopus 로고    scopus 로고
    • Anti-inflammatory actions of PPAR ligands: New insights on cellular and molecular mechanisms
    • DOI 10.1016/j.it.2007.09.003, PII S147149060700244X
    • Straus DS, and Glass CK. (2007). Anti-inflammatory actions of PPAR ligands: New insights on cellular and molecular mechanisms. Trends Immunol 28, 551-558. (Pubitemid 350101420)
    • (2007) Trends in Immunology , vol.28 , Issue.12 , pp. 551-558
    • Straus, D.S.1    Glass, C.K.2
  • 53
    • 0019297043 scopus 로고
    • Pathogenicity of influenza virus
    • Sweet C, and Smith H. (1980). Pathogenicity of influenza virus. Microbiol Rev 44, 303-330. (Pubitemid 11128311)
    • (1980) Microbiological Reviews , vol.44 , Issue.2 , pp. 303-330
    • Sweet, C.1    Smith, H.2
  • 54
    • 79958051552 scopus 로고    scopus 로고
    • Cellular tran-scriptional profiling in human lung epithelial cells infected by different subtypes of influenza A viruses reveals an overall down-regulation of the host p53 pathway
    • Terrier O, Josset L, Textoris J, et al. (2011). Cellular tran-scriptional profiling in human lung epithelial cells infected by different subtypes of influenza A viruses reveals an overall down-regulation of the host p53 pathway. Virol J 8, 285.
    • (2011) Virol J , vol.8 , pp. 285
    • Terrier, O.1    Josset, L.2    Textoris, J.3
  • 55
    • 0037407924 scopus 로고    scopus 로고
    • Predicting gene function by conserved co-expression
    • DOI 10.1016/S0168-9525(03)00056-8
    • van Noort V, Snel B, and Huynen MA. (2003). Predicting gene function by conserved co-expression. Trends Genet 19, 238-242. (Pubitemid 36507003)
    • (2003) Trends in Genetics , vol.19 , Issue.5 , pp. 238-242
    • Van Noort, V.1    Snel, B.2    Huynen, M.A.3
  • 56
    • 55549092053 scopus 로고    scopus 로고
    • Assessing the validity domains of graphical Gaussian models in order to infer relationships among components of complex biological systems
    • Villers F, Schaeffer B, Bertin C, and Huet S. (2008). Assessing the validity domains of graphical Gaussian models in order to infer relationships among components of complex biological systems. Stat Appl Genet Mol Biol 7, 14.
    • (2008) Stat Appl Genet Mol Biol , vol.7 , pp. 14
    • Villers, F.1    Schaeffer, B.2    Bertin, C.3    Huet, S.4
  • 57
    • 78649489546 scopus 로고    scopus 로고
    • ExprEssence-Revealing the essence of differential experimental data in the context of an interaction/regulation net-work
    • Warsow G, Greber B, Falk SS, et al. (2010). ExprEssence-Revealing the essence of differential experimental data in the context of an interaction/regulation net-work. BMC Syst Biol 4, 164.
    • (2010) BMC Syst Biol , vol.4 , pp. 164
    • Warsow, G.1    Greber, B.2    Falk, S.S.3
  • 60
    • 33745743619 scopus 로고    scopus 로고
    • Lipid metabolism and dynamics during phagocytosis
    • DOI 10.1016/j.ceb.2006.06.006, PII S0955067406000822
    • Yeung T, Ozdamar B, Paroutis P, and Grinstein S. (2006). Lipid metabolism and dynamics during phagocytosis. Curr Opin Cell Biol 18, 429-437. (Pubitemid 44016055)
    • (2006) Current Opinion in Cell Biology , vol.18 , Issue.4 , pp. 429-437
    • Yeung, T.1    Ozdamar, B.2    Paroutis, P.3    Grinstein, S.4
  • 61
    • 78149490549 scopus 로고    scopus 로고
    • The cell cycle time of CD8 + T cells responding in vivo is controlled by the type of antigenic stimulus
    • Yoon H, Kim TS, and Braciale TJ. (2010). The cell cycle time of CD8 + T cells responding in vivo is controlled by the type of antigenic stimulus. PLoS One 5, e15423.
    • (2010) PLoS One , vol.5
    • Yoon, H.1    Kim, T.S.2    Braciale, T.J.3
  • 62
    • 77952663448 scopus 로고    scopus 로고
    • TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach
    • Zoppoli P, Morganella S, and Ceccarelli M. (2010). TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 11, 154.
    • (2010) BMC Bioinformatics , vol.11 , pp. 154
    • Zoppoli, P.1    Morganella, S.2    Ceccarelli, M.3
  • 63
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • Zou M, and Conzen SD. (2005). A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics 21, 71-79.
    • (2005) Bioinformatics , vol.21 , pp. 71-79
    • Zou, M.1    Conzen, S.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.