메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages

Gene regulatory networks modelling using a dynamic evolutionary hybrid

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARK DATASETS; EVOLUTIONARY TRAINING; GENE EXPRESSION DATA; GENE REGULATORY NETWORKS; HIGH DIMENSIONALITY; RECURRENT NETWORKS; REGULATORY NETWORK; SELF-ORGANIZING STRUCTURES;

EID: 77951156119     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-140     Document Type: Article
Times cited : (26)

References (48)
  • 1
    • 0642336165 scopus 로고    scopus 로고
    • The engineering of gene regulatory networks
    • 10.1146/annurev.bioeng.5.040202.121553, 14527313
    • Kaern M, Blake WJ, Collins JJ. The engineering of gene regulatory networks. Annual Review of Biomedical Engineering 2003, 5:179-206. 10.1146/annurev.bioeng.5.040202.121553, 14527313.
    • (2003) Annual Review of Biomedical Engineering , vol.5 , pp. 179-206
    • Kaern, M.1    Blake, W.J.2    Collins, J.J.3
  • 2
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • 10.1038/nrm2503, 18797474
    • Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nature Reviews Molecular Cell Biology 2008, 9:770-780. 10.1038/nrm2503, 18797474.
    • (2008) Nature Reviews Molecular Cell Biology , vol.9 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 3
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the metabolic and genetic control of gene expression on a genomic scale
    • 10.1126/science.278.5338.680, 9381177
    • DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278:680-686. 10.1126/science.278.5338.680, 9381177.
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1    Iyer, V.R.2    Brown, P.O.3
  • 5
    • 0345983657 scopus 로고    scopus 로고
    • From boolean to probabilistic boolean networks as models of genetic regulatory networks
    • Shmulevich I, Dougherty E, Zhang W. From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proc IEEE 2002, 90:1778-1792.
    • (2002) Proc IEEE , vol.90 , pp. 1778-1792
    • Shmulevich, I.1    Dougherty, E.2    Zhang, W.3
  • 6
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL: A general reverse engineering algorithm for inference of genetic network architectures
    • Liang S, Fuhrman S, Somogyi R. REVEAL: A general reverse engineering algorithm for inference of genetic network architectures. Proc Pacific Symp Biocomputing 1998, 3:18-29.
    • (1998) Proc Pacific Symp Biocomputing , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 8
  • 9
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comp Biol 2000, 7:601-620.
    • (2000) J Comp Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 10
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic bayesian networks
    • 10.1093/bib/4.3.228, 14582517
    • Kim SY, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic bayesian networks. Briefings in Bioinformatics 2003, 4:228-235. 10.1093/bib/4.3.228, 14582517.
    • (2003) Briefings in Bioinformatics , vol.4 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 12
    • 3343020085 scopus 로고    scopus 로고
    • Integrative analysis of cell cycle control in budding yeast
    • 10.1091/mbc.E03-11-0794, 491841, 15169868
    • Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ. Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 2004, 15:3841-3862. 10.1091/mbc.E03-11-0794, 491841, 15169868.
    • (2004) Mol Biol Cell , vol.15 , pp. 3841-3862
    • Chen, K.C.1    Calzone, L.2    Csikasz-Nagy, A.3    Cross, F.R.4    Novak, B.5    Tyson, J.J.6
  • 13
    • 52649142078 scopus 로고    scopus 로고
    • Computational models reconstruct gene regulatory networks
    • 10.1039/b800446n, 19082138
    • Bezerianos A, Maraziotis IA. Computational models reconstruct gene regulatory networks. Molecular Biosystems 2008, 4:993-1000. 10.1039/b800446n, 19082138.
    • (2008) Molecular Biosystems , vol.4 , pp. 993-1000
    • Bezerianos, A.1    Maraziotis, I.A.2
  • 15
    • 0034244894 scopus 로고    scopus 로고
    • Identification and control of dynamic systems using recurrent fuzzy neural networks
    • Lee CH, Teng CC. Identification and control of dynamic systems using recurrent fuzzy neural networks. IEEE Transactions on Fuzzy Systems 2000, 8:349-266.
    • (2000) IEEE Transactions on Fuzzy Systems , vol.8 , pp. 349-1266
    • Lee, C.H.1    Teng, C.C.2
  • 16
    • 0032681147 scopus 로고    scopus 로고
    • A recurrent self-organizing neural fuzzy inference network
    • Juang CF, Lin CT. A recurrent self-organizing neural fuzzy inference network. IEEE Trans Neural Networks 1999, 10:828-845.
    • (1999) IEEE Trans Neural Networks , vol.10 , pp. 828-845
    • Juang, C.F.1    Lin, C.T.2
  • 17
    • 34249010864 scopus 로고    scopus 로고
    • Gene networks reconstruction and time series prediction from microarray data using recurrent neural fuzzy networks
    • 10.1049/iet-syb:20050107, 17370428
    • Maraziotis IA, Dragomir A, Bezerianos A. Gene networks reconstruction and time series prediction from microarray data using recurrent neural fuzzy networks. IET Systems Biology 2007, 1:41-50. 10.1049/iet-syb:20050107, 17370428.
    • (2007) IET Systems Biology , vol.1 , pp. 41-50
    • Maraziotis, I.A.1    Dragomir, A.2    Bezerianos, A.3
  • 18
    • 42549172373 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from expression data by discovering fuzzy dependency relationships
    • Ma PCH, Chan KCC. Inferring gene regulatory networks from expression data by discovering fuzzy dependency relationships. IEEE Transactions on fuzzy Systems 2008, 16:455-465.
    • (2008) IEEE Transactions on fuzzy Systems , vol.16 , pp. 455-465
    • Ma, P.C.H.1    Chan, K.C.C.2
  • 20
    • 33748654580 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time series data using the minimum description length principle
    • 10.1093/bioinformatics/btl364, 16845143
    • Zhao W, Serpedin E, Dougherty ER. Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 2006, 22:2129-2135. 10.1093/bioinformatics/btl364, 16845143.
    • (2006) Bioinformatics , vol.22 , pp. 2129-2135
    • Zhao, W.1    Serpedin, E.2    Dougherty, E.R.3
  • 22
    • 1842687878 scopus 로고    scopus 로고
    • The yeast cell cycle network is robustely designed
    • 10.1073/pnas.0305937101, 387325, 15037758
    • Li F, Long T, Lu Y, Ouyang Q, Tang C. The yeast cell cycle network is robustely designed. PNAS 2004, 101:4781-4786. 10.1073/pnas.0305937101, 387325, 15037758.
    • (2004) PNAS , vol.101 , pp. 4781-4786
    • Li, F.1    Long, T.2    Lu, Y.3    Ouyang, Q.4    Tang, C.5
  • 23
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • 25624, 9843569
    • Spellman PT, Sherlock G, Zhang MQ, Iver VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9:3273-3297. 25624, 9843569.
    • (1998) Mol Biol Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iver, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botstein, D.8    Futcher, B.9
  • 28
    • 33745622668 scopus 로고    scopus 로고
    • An effective learning method for constructing gene networks
    • 10.1093/bioinformatics/btl090, 16543279
    • Chen X, Anantha G, Wang X. An effective learning method for constructing gene networks. Bioinformatics 2006, 22:1367-1374. 10.1093/bioinformatics/btl090, 16543279.
    • (2006) Bioinformatics , vol.22 , pp. 1367-1374
    • Chen, X.1    Anantha, G.2    Wang, X.3
  • 29
    • 4444339832 scopus 로고    scopus 로고
    • Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle
    • 10.1093/bioinformatics/bth178, 15044243
    • Chen H-C, Ling H-C, Lin T-Y, Li W-H, Chen B-S. Quantitative characterization of the transcriptional regulatory network in the yeast cell cycle. Bioinformatics 2004, 20:1914-1924. 10.1093/bioinformatics/bth178, 15044243.
    • (2004) Bioinformatics , vol.20 , pp. 1914-1924
    • Chen, H.-.C.1    Ling, H.-.C.2    Lin, T.-.Y.3    Li, W.-.H.4    Chen, B.-.S.5
  • 31
    • 0344578064 scopus 로고    scopus 로고
    • APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5
    • 10.1038/46080, 10647015
    • Shirayama M, Toth A, Galova M, Nasmyth K. APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 1999, 402:203-207. 10.1038/46080, 10647015.
    • (1999) Nature , vol.402 , pp. 203-207
    • Shirayama, M.1    Toth, A.2    Galova, M.3    Nasmyth, K.4
  • 34
    • 0037161731 scopus 로고    scopus 로고
    • Comparative assessment of large-scale datasets of proteinprotein interactions
    • 10.1038/nature750, 12000970
    • von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P. Comparative assessment of large-scale datasets of proteinprotein interactions. Nature 2002, 417:399-403. 10.1038/nature750, 12000970.
    • (2002) Nature , vol.417 , pp. 399-403
    • von Mering, C.1    Krause, R.2    Snel, B.3    Cornell, M.4    Oliver, S.G.5    Fields, S.6    Bork, P.7
  • 35
    • 0036900861 scopus 로고    scopus 로고
    • Transcriptional regulatory networks and the yeast cell cycle
    • 10.1016/S0955-0674(02)00391-5, 12473339
    • Futcher B. Transcriptional regulatory networks and the yeast cell cycle. Current Opinion in Cell Biology 2002, 14:676-683. 10.1016/S0955-0674(02)00391-5, 12473339.
    • (2002) Current Opinion in Cell Biology , vol.14 , pp. 676-683
    • Futcher, B.1
  • 36
    • 0342868306 scopus 로고    scopus 로고
    • Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth
    • 10.1038/35021046, 10894548
    • Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN, Futcher B. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 2000, 406:90-94. 10.1038/35021046, 10894548.
    • (2000) Nature , vol.406 , pp. 90-94
    • Zhu, G.1    Spellman, P.T.2    Volpe, T.3    Brown, P.O.4    Botstein, D.5    Davis, T.N.6    Futcher, B.7
  • 37
    • 0025944525 scopus 로고
    • The Role of SWI4 and SWI6 in the activity of G1 cyclins in yeast
    • 10.1016/0092-8674(91)90444-4, 1832338
    • Nasmyth K, Dirick L. The Role of SWI4 and SWI6 in the activity of G1 cyclins in yeast. Cell 1991, 66:995-1013. 10.1016/0092-8674(91)90444-4, 1832338.
    • (1991) Cell , vol.66 , pp. 995-1013
    • Nasmyth, K.1    Dirick, L.2
  • 38
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • 10.1093/nar/28.1.27, 102409, 10592173
    • Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 2000, 28:27-30. 10.1093/nar/28.1.27, 102409, 10592173.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 39
    • 0027173154 scopus 로고
    • Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins
    • 413417, 8387915
    • Tyers M, Tokiwa G, Futcher B. Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J 1993, 12:1955-1968. 413417, 8387915.
    • (1993) EMBO J , vol.12 , pp. 1955-1968
    • Tyers, M.1    Tokiwa, G.2    Futcher, B.3
  • 40
    • 43849084347 scopus 로고    scopus 로고
    • A copula method for modeling directional dependence of genes
    • 10.1186/1471-2105-9-225, 2386493, 18447957
    • Kim J-M, Jung Y-S, Sungur E-A, Haan K-H, Park C, Sohn I. A copula method for modeling directional dependence of genes. BMC Bioinformatics 2008, 9:225. 10.1186/1471-2105-9-225, 2386493, 18447957.
    • (2008) BMC Bioinformatics , vol.9 , pp. 225
    • Kim, J.-.M.1    Jung, Y.-.S.2    Sungur, E.-.A.3    Haan, K.-.H.4    Park, C.5    Sohn, I.6
  • 41
    • 0036531230 scopus 로고    scopus 로고
    • A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithm
    • Juang CF. A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithm. IEEE Trans Fuzzy Syst 2002, 10:155-170.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , pp. 155-170
    • Juang, C.F.1
  • 43
    • 0036532267 scopus 로고    scopus 로고
    • A recurrent fuzzy-neural model for dynamic system identification
    • Mastrocostas PA, Theocharis JB. A recurrent fuzzy-neural model for dynamic system identification. IEEE Trans Syst, Man Cybern 2002, 32:176-190.
    • (2002) IEEE Trans Syst, Man Cybern , vol.32 , pp. 176-190
    • Mastrocostas, P.A.1    Theocharis, J.B.2
  • 44
    • 0028369322 scopus 로고
    • Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems
    • Lin CT, Lee CS. Reinforcement structure/parameter learning for neural-network-based fuzzy logic control systems. IEEE Trans Fuzzy Syst 1994, 2:46-63.
    • (1994) IEEE Trans Fuzzy Syst , vol.2 , pp. 46-63
    • Lin, C.T.1    Lee, C.S.2
  • 48
    • 17444430052 scopus 로고    scopus 로고
    • Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection
    • 10.1093/bioinformatics/bti226, 15613398
    • Guthke R, Moller U, Hoffmann M, Thies F, Topfer S. Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 2005, 21:1626-1634. 10.1093/bioinformatics/bti226, 15613398.
    • (2005) Bioinformatics , vol.21 , pp. 1626-1634
    • Guthke, R.1    Moller, U.2    Hoffmann, M.3    Thies, F.4    Topfer, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.