메뉴 건너뛰기




Volumn 275, Issue 3, 2014, Pages 198-212

In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

Author keywords

Diverse chemicals; Ensemble learning models; Interspecies model; Molecular descriptors; Regulatory toxicology; Toxicity

Indexed keywords

INDUSTRIAL CHEMICAL;

EID: 84896725462     PISSN: 0041008X     EISSN: 10960333     Source Type: Journal    
DOI: 10.1016/j.taap.2014.01.006     Document Type: Article
Times cited : (23)

References (95)
  • 1
    • 84883675018 scopus 로고    scopus 로고
    • Applied classification support vector machine for providing second opinion of breast cancer diagnosis
    • Abdelaal M.M.A., Farouq M.W., Sena H.A., Salem A.B.M. Applied classification support vector machine for providing second opinion of breast cancer diagnosis. Online J. Math. Stat. 2010, 1:1-7.
    • (2010) Online J. Math. Stat. , vol.1 , pp. 1-7
    • Abdelaal, M.M.A.1    Farouq, M.W.2    Sena, H.A.3    Salem, A.B.M.4
  • 2
    • 18944403924 scopus 로고    scopus 로고
    • Chemistry toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis
    • Aptula A., Roberts D., Cronin M., Schultz T. Chemistry toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis. Chem. Res. Toxicol. 2005, 18:844-854.
    • (2005) Chem. Res. Toxicol. , vol.18 , pp. 844-854
    • Aptula, A.1    Roberts, D.2    Cronin, M.3    Schultz, T.4
  • 5
    • 45749117943 scopus 로고    scopus 로고
    • A novel approach: chemical relational databases, and the role of the isscan database on assessing chemical carcinogenicity
    • Benigni R., Bossa C., Richard A., Yang C. A novel approach: chemical relational databases, and the role of the isscan database on assessing chemical carcinogenicity. Ann. Ist. Super. Sanita 2008, 44:48-56.
    • (2008) Ann. Ist. Super. Sanita , vol.44 , pp. 48-56
    • Benigni, R.1    Bossa, C.2    Richard, A.3    Yang, C.4
  • 6
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman L. Heuristics of instability and stabilization in model selection. Ann. Stat. 1996, 24:2350-2383.
    • (1996) Ann. Stat. , vol.24 , pp. 2350-2383
    • Breiman, L.1
  • 7
    • 17644428023 scopus 로고    scopus 로고
    • An automated group contribution method in predicting aquatic toxicity: the diatomic fragment approach
    • Casalegno M., Benfenati E., Sello G. An automated group contribution method in predicting aquatic toxicity: the diatomic fragment approach. Chem. Res. Toxicol. 2005, 18:740-746.
    • (2005) Chem. Res. Toxicol. , vol.18 , pp. 740-746
    • Casalegno, M.1    Benfenati, E.2    Sello, G.3
  • 9
    • 79951721392 scopus 로고    scopus 로고
    • In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods
    • Cheng F., Shen J., Yu Y., Li W., Liu G., Lee P.W., Tang Y. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods. Chemosphere 2011, 82:1636-1643.
    • (2011) Chemosphere , vol.82 , pp. 1636-1643
    • Cheng, F.1    Shen, J.2    Yu, Y.3    Li, W.4    Liu, G.5    Lee, P.W.6    Tang, Y.7
  • 10
    • 68149182282 scopus 로고    scopus 로고
    • Comments on the definition of the Q2 parameter for QSAR validation
    • Consonni V., Ballabio D., Todeschini R. Comments on the definition of the Q2 parameter for QSAR validation. J. Chem. Inf. Model. 2009, 49:1669-1678.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 1669-1678
    • Consonni, V.1    Ballabio, D.2    Todeschini, R.3
  • 11
    • 0034802673 scopus 로고    scopus 로고
    • Development of quantitative structure-activity relationships for the toxicity of aromatic compounds to Tetrahymena pyriformis: comparative assessment of the methodologies
    • Cronin M., Schultz T. Development of quantitative structure-activity relationships for the toxicity of aromatic compounds to Tetrahymena pyriformis: comparative assessment of the methodologies. Chem. Res. Toxicol. 2001, 14:1284-1295.
    • (2001) Chem. Res. Toxicol. , vol.14 , pp. 1284-1295
    • Cronin, M.1    Schultz, T.2
  • 12
    • 0036882521 scopus 로고    scopus 로고
    • Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis
    • Cronin M.T.D., Aptula A.O., Duffy J.C., Netzeva T.I., Rowe P.H., Valkova I.V., Schultz T.W. Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 2002, 49:1201-1221.
    • (2002) Chemosphere , vol.49 , pp. 1201-1221
    • Cronin, M.T.D.1    Aptula, A.O.2    Duffy, J.C.3    Netzeva, T.I.4    Rowe, P.H.5    Valkova, I.V.6    Schultz, T.W.7
  • 13
    • 1942453814 scopus 로고    scopus 로고
    • Assessment and modeling of the toxicity of organic chemicals to Chlorella vulgaris: development of a novel database
    • Cronin M.T.D., Netzeva T.I., Dearden J.C., Edwards R., Worgan A.D.P. Assessment and modeling of the toxicity of organic chemicals to Chlorella vulgaris: development of a novel database. Chem. Res. Toxicol. 2004, 17:545-554.
    • (2004) Chem. Res. Toxicol. , vol.17 , pp. 545-554
    • Cronin, M.T.D.1    Netzeva, T.I.2    Dearden, J.C.3    Edwards, R.4    Worgan, A.D.P.5
  • 14
    • 3242698658 scopus 로고    scopus 로고
    • Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis
    • Devillers J. Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis. SAR QSAR Environ. Res. 2004, 15:237-249.
    • (2004) SAR QSAR Environ. Res. , vol.15 , pp. 237-249
    • Devillers, J.1
  • 15
    • 0035154524 scopus 로고    scopus 로고
    • Structure-activity relationships for aquatic toxicity to Tetrahymena: halogen-substituted aliphatic esters
    • Deweese A.D., Schultz T. Structure-activity relationships for aquatic toxicity to Tetrahymena: halogen-substituted aliphatic esters. Environ. Toxicol. 2001, 16:54-60.
    • (2001) Environ. Toxicol. , vol.16 , pp. 54-60
    • Deweese, A.D.1    Schultz, T.2
  • 16
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Dietterich T.G. Ensemble methods in machine learning. Lect. Notes Comput. Sci. 2000, 1857:1-15.
    • (2000) Lect. Notes Comput. Sci. , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 17
    • 66149136870 scopus 로고    scopus 로고
    • Quantitative structure-toxicity models for heterogeneous aliphatic compounds
    • Duchowicz P.R., Ocsachoque M.A. Quantitative structure-toxicity models for heterogeneous aliphatic compounds. QSAR Comb. Sci. 2009, 28:281-295.
    • (2009) QSAR Comb. Sci. , vol.28 , pp. 281-295
    • Duchowicz, P.R.1    Ocsachoque, M.A.2
  • 18
    • 0002344794 scopus 로고
    • Bootstrap methods: another look at the jackknife
    • Efron B. Bootstrap methods: another look at the jackknife. Ann. Stat. 1979, 7:1-26.
    • (1979) Ann. Stat. , vol.7 , pp. 1-26
    • Efron, B.1
  • 19
    • 40949159249 scopus 로고    scopus 로고
    • An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis
    • Enoch S.J., Cronin M.T.D., Schultz T.W., Madden J.C. An evaluation of global QSAR models for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 2008, 71:1225-1232.
    • (2008) Chemosphere , vol.71 , pp. 1225-1232
    • Enoch, S.J.1    Cronin, M.T.D.2    Schultz, T.W.3    Madden, J.C.4
  • 20
    • 0043132440 scopus 로고    scopus 로고
    • Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs
    • Eriksson L., Jaworska J., Worth A.P., Cronin M.T.D., McDowell R.M., Gramatica P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect. 2003, 111:1361-1375.
    • (2003) Environ. Health Perspect. , vol.111 , pp. 1361-1375
    • Eriksson, L.1    Jaworska, J.2    Worth, A.P.3    Cronin, M.T.D.4    McDowell, R.M.5    Gramatica, P.6
  • 21
    • 38149091578 scopus 로고    scopus 로고
    • Comparative QSTR study using semi-empirical and first principle methods based descriptors for acute toxicity of diverse organic compounds to the fathead minnow
    • Eroglu E., Palaz S., Oltulu O., Turkmen H., Ozaydin C. Comparative QSTR study using semi-empirical and first principle methods based descriptors for acute toxicity of diverse organic compounds to the fathead minnow. Int. J. Mol. Sci. 2007, 8:1265-1283.
    • (2007) Int. J. Mol. Sci. , vol.8 , pp. 1265-1283
    • Eroglu, E.1    Palaz, S.2    Oltulu, O.3    Turkmen, H.4    Ozaydin, C.5
  • 22
    • 77949521262 scopus 로고    scopus 로고
    • -1 for benzene derivatives to ciliate Tetrahymena pyriformis from their molecular descriptors
    • -1 for benzene derivatives to ciliate Tetrahymena pyriformis from their molecular descriptors. Bull. Chem. Soc. Jpn. 2010, 83:233-245.
    • (2010) Bull. Chem. Soc. Jpn. , vol.83 , pp. 233-245
    • Fatemi, M.H.1    Malekzadeh, H.2
  • 23
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27:861-874.
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 25
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 29:1189-1232.
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 26
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38:367-378.
    • (2002) Comput. Stat. Data Anal. , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 27
    • 34250628103 scopus 로고    scopus 로고
    • Principles of QSAR models validation: internal and external
    • Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 2007, 26:694-701.
    • (2007) QSAR Comb. Sci. , vol.26 , pp. 694-701
    • Gramatica, P.1
  • 28
    • 26944461597 scopus 로고    scopus 로고
    • A study on feature selection for toxicity prediction
    • Guo G., Neagu D., Cronin M.T.D. A study on feature selection for toxicity prediction. Lect. Notes Comput. Sci. 2005, 3614:31-34.
    • (2005) Lect. Notes Comput. Sci. , vol.3614 , pp. 31-34
    • Guo, G.1    Neagu, D.2    Cronin, M.T.D.3
  • 29
    • 15744402095 scopus 로고    scopus 로고
    • A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies
    • Hancock T., Put R., Coomans D., Vander Heyden Y., Everingham Y. A performance comparison of modern statistical techniques for molecular descriptor selection and retention prediction in chromatographic QSRR studies. Chemom. Intell. Lab. Syst. 2005, 76:185-196.
    • (2005) Chemom. Intell. Lab. Syst. , vol.76 , pp. 185-196
    • Hancock, T.1    Put, R.2    Coomans, D.3    Vander Heyden, Y.4    Everingham, Y.5
  • 30
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • Huber P. Robust estimation of a location parameter. Ann. Math. Stat. 1964, 53:73-101.
    • (1964) Ann. Math. Stat. , vol.53 , pp. 73-101
    • Huber, P.1
  • 31
    • 84863147203 scopus 로고    scopus 로고
    • Prediction of acute toxicity to fathead minnow by Local Model based QSAR and global QSAR approaches
    • In Y., Lee S.K., Kim P.J., No K.T. Prediction of acute toxicity to fathead minnow by Local Model based QSAR and global QSAR approaches. Bull. Korean Chem. Soc. 2012, 33:613-619.
    • (2012) Bull. Korean Chem. Soc. , vol.33 , pp. 613-619
    • In, Y.1    Lee, S.K.2    Kim, P.J.3    No, K.T.4
  • 32
    • 77953020220 scopus 로고    scopus 로고
    • Consistency of random survival forests
    • Ishwaran H., Kogalur U.B. Consistency of random survival forests. Stat. Probab. Lett. 2010, 80:1056-1064.
    • (2010) Stat. Probab. Lett. , vol.80 , pp. 1056-1064
    • Ishwaran, H.1    Kogalur, U.B.2
  • 33
    • 33746249293 scopus 로고    scopus 로고
    • Support vector machines prediction of the mechanism of toxic action from hydrophobicity and experimental toxicity against Pimephales promelas and Tetrahymena pyriformis
    • Ivanciuc O. Support vector machines prediction of the mechanism of toxic action from hydrophobicity and experimental toxicity against Pimephales promelas and Tetrahymena pyriformis. Internet Electron. J. Mol. Des. 2004, 2004(3):802-821.
    • (2004) Internet Electron. J. Mol. Des. , vol.2004 , Issue.3 , pp. 802-821
    • Ivanciuc, O.1
  • 34
    • 44149114693 scopus 로고    scopus 로고
    • Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks
    • Jalali-Heravi M., Kyani A. Comparative structure-toxicity relationship study of substituted benzenes to Tetrahymena pyriformis using shuffling-adaptive neuro fuzzy inference system and artificial neural networks. Chemosphere 2008, 72:733-740.
    • (2008) Chemosphere , vol.72 , pp. 733-740
    • Jalali-Heravi, M.1    Kyani, A.2
  • 35
    • 47749146077 scopus 로고    scopus 로고
    • Toxicity caused by para-substituted phenols on Tetrahymena pyriformis: the structure-activity relationships
    • Jäntschi L., Popescu V., Bolboacǎ S.D. Toxicity caused by para-substituted phenols on Tetrahymena pyriformis: the structure-activity relationships. Electron. J. Biotechnol. 2008, 11:1-12.
    • (2008) Electron. J. Biotechnol. , vol.11 , pp. 1-12
    • Jäntschi, L.1    Popescu, V.2    Bolboacǎ, S.D.3
  • 36
    • 80053367576 scopus 로고    scopus 로고
    • Prediction of the aquatic toxicity of phenols to Tetrahymena pyriformis from molecular descriptors
    • Jiang D.X., Li Y., Li J., Wang G.X. Prediction of the aquatic toxicity of phenols to Tetrahymena pyriformis from molecular descriptors. Int. J. Environ. Res. 2011, 5:923-938.
    • (2011) Int. J. Environ. Res. , vol.5 , pp. 923-938
    • Jiang, D.X.1    Li, Y.2    Li, J.3    Wang, G.X.4
  • 38
    • 0030470692 scopus 로고    scopus 로고
    • Random correlation in variable selection for multivariate calibration with a genetic algorithm
    • Jouan-Rimbaud D., Massart D.L., de Noord O.E. Random correlation in variable selection for multivariate calibration with a genetic algorithm. Chemom. Intell. Lab. Syst. 1996, 35:213-220.
    • (1996) Chemom. Intell. Lab. Syst. , vol.35 , pp. 213-220
    • Jouan-Rimbaud, D.1    Massart, D.L.2    de Noord, O.E.3
  • 41
    • 84896710523 scopus 로고    scopus 로고
    • Comparative study of mechanism of action of allyl alcohols for different endpoints
    • Koleva Y., Barzilov I. Comparative study of mechanism of action of allyl alcohols for different endpoints. Sci. Work. Univ. 2010, 49:55-59.
    • (2010) Sci. Work. Univ. , vol.49 , pp. 55-59
    • Koleva, Y.1    Barzilov, I.2
  • 42
    • 0003896537 scopus 로고
    • VCH, Wiley, R. Mannhold, P. Kroogsgard-Larsen, H. Timmerman (Eds.)
    • Kubinyi H. Methods and Principles in Medicinal Chemistry 1993, vol. 1. VCH, Wiley. R. Mannhold, P. Kroogsgard-Larsen, H. Timmerman (Eds.).
    • (1993) Methods and Principles in Medicinal Chemistry , vol.1
    • Kubinyi, H.1
  • 44
    • 13844270855 scopus 로고    scopus 로고
    • Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis
    • Luan F., Zhang R.S., Zhao C.Y., Yao X.J., Liu M.C., Hu Z.D., Fan B.T. Classification of the carcinogenicity of N-nitroso compounds based on support vector machines and linear discriminant analysis. Chem. Res. Toxicol. 2005, 18:198-203.
    • (2005) Chem. Res. Toxicol. , vol.18 , pp. 198-203
    • Luan, F.1    Zhang, R.S.2    Zhao, C.Y.3    Yao, X.J.4    Liu, M.C.5    Hu, Z.D.6    Fan, B.T.7
  • 46
    • 84879686982 scopus 로고    scopus 로고
    • Integrating GUSAR and QSAR analyses for antimalarial activity of synthetic prodiginines against multi drug resistant strain
    • Mahajan D.T., Masand V.H., Patil K.N., Hadda T.B., Rastija V. Integrating GUSAR and QSAR analyses for antimalarial activity of synthetic prodiginines against multi drug resistant strain. Med. Chem. Res. 2013, 22:2284-2292.
    • (2013) Med. Chem. Res. , vol.22 , pp. 2284-2292
    • Mahajan, D.T.1    Masand, V.H.2    Patil, K.N.3    Hadda, T.B.4    Rastija, V.5
  • 47
    • 59949083332 scopus 로고    scopus 로고
    • An alternative approach for the prediction of significant wave heights based on classification and regression trees
    • Mahjoobi J., Etemad-Shahidi A. An alternative approach for the prediction of significant wave heights based on classification and regression trees. Appl. Ocean Res. 2008, 30:172-177.
    • (2008) Appl. Ocean Res. , vol.30 , pp. 172-177
    • Mahjoobi, J.1    Etemad-Shahidi, A.2
  • 49
    • 80052798316 scopus 로고    scopus 로고
    • COMFA analysis and toxicity risk assessment of coumarin analogues as Mao-A inhibitors: attempting better insight in drug design
    • Masand V.H., Jawarkar R.D., Patil K.N., Mahajan D.T., Hadda T.B., Kurhade G.H. COMFA analysis and toxicity risk assessment of coumarin analogues as Mao-A inhibitors: attempting better insight in drug design. Der. Pharm. Lett. 2010, 2:350-357.
    • (2010) Der. Pharm. Lett. , vol.2 , pp. 350-357
    • Masand, V.H.1    Jawarkar, R.D.2    Patil, K.N.3    Mahajan, D.T.4    Hadda, T.B.5    Kurhade, G.H.6
  • 52
    • 28444494403 scopus 로고    scopus 로고
    • QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data
    • Netzeva T., Schultz T. QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data. Chemosphere 2005, 61:1632-1643.
    • (2005) Chemosphere , vol.61 , pp. 1632-1643
    • Netzeva, T.1    Schultz, T.2
  • 53
    • 0141797324 scopus 로고    scopus 로고
    • Partial least squares modelling of the acute toxicity of aliphatic compounds to Tetrahymena pyriformis
    • Netzeva T., Schultz T., Aptula A., Cronin M. Partial least squares modelling of the acute toxicity of aliphatic compounds to Tetrahymena pyriformis. SAR QSAR Environ. Res. 2003, 14:265-283.
    • (2003) SAR QSAR Environ. Res. , vol.14 , pp. 265-283
    • Netzeva, T.1    Schultz, T.2    Aptula, A.3    Cronin, M.4
  • 55
    • 27744520085 scopus 로고    scopus 로고
    • An approach to determining applicability domains for QSAR group contribution models: an analysis of SRC KOWWIN
    • Nikolova-Jeliazkova N., Jaworska J. An approach to determining applicability domains for QSAR group contribution models: an analysis of SRC KOWWIN. Altern. Lab. Anim. 2005, 33:461-470.
    • (2005) Altern. Lab. Anim. , vol.33 , pp. 461-470
    • Nikolova-Jeliazkova, N.1    Jaworska, J.2
  • 56
    • 61749099319 scopus 로고    scopus 로고
    • Predicting toxic action mechanisms of phenols using AdaBoost Learner
    • Niu B., Jin Y., Lu W., Li G. Predicting toxic action mechanisms of phenols using AdaBoost Learner. Chemom. Intell. Lab. Syst. 2009, 96:43-48.
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 43-48
    • Niu, B.1    Jin, Y.2    Lu, W.3    Li, G.4
  • 58
    • 33644766846 scopus 로고    scopus 로고
    • Quantitative structure-toxicity relationships (QSTRs): a comparative study of various non linear methods. General regression neural network, radial basis function neural network and support vector machine in predicting toxicity of nitro- and cyano-aromatics to Tetrahymena pyriformis
    • Panaye A., Fan B.T., Doucet J.P., Yao X.J., Zhang R.S., Liu M.C., Hu Z.D. Quantitative structure-toxicity relationships (QSTRs): a comparative study of various non linear methods. General regression neural network, radial basis function neural network and support vector machine in predicting toxicity of nitro- and cyano-aromatics to Tetrahymena pyriformis. SAR QSAR Environ. Res. 2006, 17:75-91.
    • (2006) SAR QSAR Environ. Res. , vol.17 , pp. 75-91
    • Panaye, A.1    Fan, B.T.2    Doucet, J.P.3    Yao, X.J.4    Zhang, R.S.5    Liu, M.C.6    Hu, Z.D.7
  • 59
    • 0642336892 scopus 로고    scopus 로고
    • Ecotoxicity prediction using mechanism and non-mechanism base QSARs: a preliminary study
    • Ren S. Ecotoxicity prediction using mechanism and non-mechanism base QSARs: a preliminary study. Chemosphere 2003, 53:1053-1065.
    • (2003) Chemosphere , vol.53 , pp. 1053-1065
    • Ren, S.1
  • 60
    • 0037165508 scopus 로고    scopus 로고
    • Identifying the mechanism of aquatic toxicity of selected compounds by hydrophobicity and electrophilicity descriptors
    • Ren S., Schultz T. Identifying the mechanism of aquatic toxicity of selected compounds by hydrophobicity and electrophilicity descriptors. Toxicol. Lett. 2002, 129:151-160.
    • (2002) Toxicol. Lett. , vol.129 , pp. 151-160
    • Ren, S.1    Schultz, T.2
  • 61
    • 0034000175 scopus 로고    scopus 로고
    • Ratios between acute aquatic toxicity and effects on population growth rates in relation to toxicant mode of action
    • Roex E.W.M., Gestel C.A.M.V., Wezel A.P.V., Straalen N.M.V. ratios between acute aquatic toxicity and effects on population growth rates in relation to toxicant mode of action. Environ. Toxicol. Chem. 2000, 19:685-693.
    • (2000) Environ. Toxicol. Chem. , vol.19 , pp. 685-693
    • Roex, E.W.M.1    Gestel, C.A.M.V.2    Wezel, A.P.V.3    Straalen, N.M.V.4
  • 63
    • 36749045167 scopus 로고    scopus 로고
    • Exploring the impact of size of training sets for the development of predictive QSAR models
    • Roy P.P., Leonard J.T., Roy K. Exploring the impact of size of training sets for the development of predictive QSAR models. Chemom. Intell. Lab. Syst. 2008, 90:31-42.
    • (2008) Chemom. Intell. Lab. Syst. , vol.90 , pp. 31-42
    • Roy, P.P.1    Leonard, J.T.2    Roy, K.3
  • 64
    • 67249129284 scopus 로고    scopus 로고
    • On two novel parameters for validation of predictive QSAR models
    • Roy P.P., Paul S., Mitra I., Roy K. On two novel parameters for validation of predictive QSAR models. Molecules 2009, 29:1660-1701.
    • (2009) Molecules , vol.29 , pp. 1660-1701
    • Roy, P.P.1    Paul, S.2    Mitra, I.3    Roy, K.4
  • 65
    • 0001214991 scopus 로고    scopus 로고
    • Tetratox: Tetrahymena pyriformis population growth impairment endpoint-a surrogate for fish lethality
    • Schultz T.W. Tetratox: Tetrahymena pyriformis population growth impairment endpoint-a surrogate for fish lethality. Toxicol. Methods 1997, 7:289-309.
    • (1997) Toxicol. Methods , vol.7 , pp. 289-309
    • Schultz, T.W.1
  • 66
    • 0033402225 scopus 로고    scopus 로고
    • Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis
    • Schultz T.W. Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis. Chem. Res. Toxicol. 1999, 12:1262-1267.
    • (1999) Chem. Res. Toxicol. , vol.12 , pp. 1262-1267
    • Schultz, T.W.1
  • 67
    • 27944440798 scopus 로고    scopus 로고
    • Development and evaluation of QSARs for ecotoxic endpoints: The benzene response-surface model for Tetrahymena toxicity
    • CRC Press, Boca Raton, FL, USA, M.T.D. Cronin, D.J. Livingstone (Eds.)
    • Schultz T.W., Netzeva T.I. Development and evaluation of QSARs for ecotoxic endpoints: The benzene response-surface model for Tetrahymena toxicity. Modeling environmental fate and toxicity 2004, 265-284. CRC Press, Boca Raton, FL, USA. M.T.D. Cronin, D.J. Livingstone (Eds.).
    • (2004) Modeling environmental fate and toxicity , pp. 265-284
    • Schultz, T.W.1    Netzeva, T.I.2
  • 68
    • 13844294282 scopus 로고    scopus 로고
    • Structure toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, R, a-unsaturated chemicals
    • Schultz T., Netzeva T., Roberts D., Cronin M. Structure toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, R, a-unsaturated chemicals. Chem. Res. Toxicol. 2005, 18:330-341.
    • (2005) Chem. Res. Toxicol. , vol.18 , pp. 330-341
    • Schultz, T.1    Netzeva, T.2    Roberts, D.3    Cronin, M.4
  • 69
    • 34250687911 scopus 로고    scopus 로고
    • Assessing applicability domains of toxicological QSARs: definition, confidence in predicted values, and the role of mechanisms of action
    • Schultz T.W., Hewitt M., Netzeva T.I., Cronin M.T.D. Assessing applicability domains of toxicological QSARs: definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb. Sci. 2007, 26:238-254.
    • (2007) QSAR Comb. Sci. , vol.26 , pp. 238-254
    • Schultz, T.W.1    Hewitt, M.2    Netzeva, T.I.3    Cronin, M.T.D.4
  • 70
    • 0042362292 scopus 로고    scopus 로고
    • Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay
    • Schuurmann G., Aptula A., Kuhne R., Ebert R. Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay. Chem. Res. Toxicol. 2003, 16:974-987.
    • (2003) Chem. Res. Toxicol. , vol.16 , pp. 974-987
    • Schuurmann, G.1    Aptula, A.2    Kuhne, R.3    Ebert, R.4
  • 71
    • 0035190409 scopus 로고    scopus 로고
    • Linear regression and computational neural network prediction of tetrahymena acute toxicity for aromatic compounds from molecular structure
    • Serra J., Jurs P., Kaiser K. Linear regression and computational neural network prediction of tetrahymena acute toxicity for aromatic compounds from molecular structure. Chem. Res. Toxicol. 2001, 14:1535-1545.
    • (2001) Chem. Res. Toxicol. , vol.14 , pp. 1535-1545
    • Serra, J.1    Jurs, P.2    Kaiser, K.3
  • 72
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality-a case study
    • Singh K.P., Basant A., Malik A., Jain G. Artificial neural network modeling of the river water quality-a case study. Ecol. Model. 2009, 220:888-895.
    • (2009) Ecol. Model. , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 73
    • 70350675244 scopus 로고    scopus 로고
    • Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution
    • Singh K.P., Ojha P., Malik A., Gain J. Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution. Chemom. Intell. Lab. Syst. 2009, 99:150-160.
    • (2009) Chemom. Intell. Lab. Syst. , vol.99 , pp. 150-160
    • Singh, K.P.1    Ojha, P.2    Malik, A.3    Gain, J.4
  • 74
    • 71749090211 scopus 로고    scopus 로고
    • Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches-a case study
    • Singh K.P., Basant N., Malik A., Jain G. Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches-a case study. Anal. Chim. Acta 2010, 658:1-11.
    • (2010) Anal. Chim. Acta , vol.658 , pp. 1-11
    • Singh, K.P.1    Basant, N.2    Malik, A.3    Jain, G.4
  • 75
    • 80052261350 scopus 로고    scopus 로고
    • Support vector machine in water quality management
    • Singh K.P., Basant N., Gupta S. Support vector machine in water quality management. Anal. Chim. Acta 2011, 703:152-162.
    • (2011) Anal. Chim. Acta , vol.703 , pp. 152-162
    • Singh, K.P.1    Basant, N.2    Gupta, S.3
  • 76
    • 84860697230 scopus 로고    scopus 로고
    • Linear and nonlinear modeling approaches for urban air quality prediction
    • Singh K.P., Gupta S., Kumar A., Shukla S.P. Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 2012, 426:244-255.
    • (2012) Sci. Total Environ. , vol.426 , pp. 244-255
    • Singh, K.P.1    Gupta, S.2    Kumar, A.3    Shukla, S.P.4
  • 77
    • 84880324511 scopus 로고    scopus 로고
    • Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches
    • Singh K.P., Gupta S., Rai P. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches. Ecotoxicol. Environ. Saf. 2013, 95:221-233.
    • (2013) Ecotoxicol. Environ. Saf. , vol.95 , pp. 221-233
    • Singh, K.P.1    Gupta, S.2    Rai, P.3
  • 78
    • 84898902434 scopus 로고    scopus 로고
    • Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data
    • Singh K.P., Gupta S., Rai P. Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data. Environ. Monit. Assess 2013, 10.1007/s10661-013-3576-6.
    • (2013) Environ. Monit. Assess
    • Singh, K.P.1    Gupta, S.2    Rai, P.3
  • 81
    • 71549137727 scopus 로고    scopus 로고
    • Prediction of the acute toxicity of chemical compounds to fathead minnow by machine learning approaches
    • Tan N.X., Li P., Rao H.B., Li Z.R., Li X.Y. Prediction of the acute toxicity of chemical compounds to fathead minnow by machine learning approaches. Chemometr. Intell. Lab. Syst. 2010, 100:66-73.
    • (2010) Chemometr. Intell. Lab. Syst. , vol.100 , pp. 66-73
    • Tan, N.X.1    Li, P.2    Rao, H.B.3    Li, Z.R.4    Li, X.Y.5
  • 82
    • 0025046339 scopus 로고
    • Uncouplers of oxidative phosphorylation
    • Terada H. Uncouplers of oxidative phosphorylation. Environ. Health Perspec. 1990, 87:213-218.
    • (1990) Environ. Health Perspec. , vol.87 , pp. 213-218
    • Terada, H.1
  • 83
    • 54249125512 scopus 로고    scopus 로고
    • Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection
    • Tetko I.V., Sushko I., Pandey A.K., Zhu H., Tropsha A., Papa E., Oberg T., Todeschini R., Fourches D., Varnek A. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J. Chem. Inf. Model. 2008, 48:1733-1746.
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1733-1746
    • Tetko, I.V.1    Sushko, I.2    Pandey, A.K.3    Zhu, H.4    Tropsha, A.5    Papa, E.6    Oberg, T.7    Todeschini, R.8    Fourches, D.9    Varnek, A.10
  • 84
    • 78650173219 scopus 로고    scopus 로고
    • QSAR modeling of the toxicity to Tetrahymena pyriformis by balance of correlations
    • Toropov A.A., Toropova A.P., Benfenati E., Manganaro A. QSAR modeling of the toxicity to Tetrahymena pyriformis by balance of correlations. Mol. Divers. 2010, 14:821-827.
    • (2010) Mol. Divers. , vol.14 , pp. 821-827
    • Toropov, A.A.1    Toropova, A.P.2    Benfenati, E.3    Manganaro, A.4
  • 85
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and exploitation
    • Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol. Inf. 2010, 29:476-488.
    • (2010) Mol. Inf. , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 86
    • 0025071340 scopus 로고
    • Rules for distinguishing toxicants that cause type I and type II narcosis syndromes
    • Veith G.D., Broderius S.J. Rules for distinguishing toxicants that cause type I and type II narcosis syndromes. Environ. Health Perspect. 1990, 87:207-211.
    • (1990) Environ. Health Perspect. , vol.87 , pp. 207-211
    • Veith, G.D.1    Broderius, S.J.2
  • 88
    • 75749095206 scopus 로고    scopus 로고
    • Molecular descriptors for quantitative structure-toxicity relationship (QSTR), II. Three ovality molecular descriptors and their use in modeling the toxicity of aliphatic alcohols on Tetrahymena pyriformis
    • Vlaia V., Olariu T., Ciubotariu C., Medeleanu M., Vlaia L., Ciubota D. Molecular descriptors for quantitative structure-toxicity relationship (QSTR), II. Three ovality molecular descriptors and their use in modeling the toxicity of aliphatic alcohols on Tetrahymena pyriformis. Rev. Chim. (Bucuresti) 2009, 60:1357-1361.
    • (2009) Rev. Chim. (Bucuresti) , vol.60 , pp. 1357-1361
    • Vlaia, V.1    Olariu, T.2    Ciubotariu, C.3    Medeleanu, M.4    Vlaia, L.5    Ciubota, D.6
  • 89
    • 77956396770 scopus 로고    scopus 로고
    • Using support vector regression coupled with the genetic algorithm for predicting acute toxicity to the fathead minnow
    • Wang Y., Zheng M., Xiao J., Lu Y., Wang F., Lu J., Luo X., Zhu W., Jiang H., Chen K. Using support vector regression coupled with the genetic algorithm for predicting acute toxicity to the fathead minnow. SAR QSAR Environ. Res. 2010, 21:559-570.
    • (2010) SAR QSAR Environ. Res. , vol.21 , pp. 559-570
    • Wang, Y.1    Zheng, M.2    Xiao, J.3    Lu, Y.4    Wang, F.5    Lu, J.6    Luo, X.7    Zhu, W.8    Jiang, H.9    Chen, K.10
  • 90
    • 77956619458 scopus 로고    scopus 로고
    • A comparative assessment of ensemble learning for credit scoring
    • Wang G., Hao J., Ma J., Jiang H. A comparative assessment of ensemble learning for credit scoring. Expert Syst. Appl. 2011, 38:223-230.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 223-230
    • Wang, G.1    Hao, J.2    Ma, J.3    Jiang, H.4
  • 91
    • 33748702895 scopus 로고    scopus 로고
    • Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods
    • Xue Y., Li H., Ung C.Y., Yap C.W., Chen Y.Z. Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods. Chem. Res. Toxicol. 2006, 19:1030-1039.
    • (2006) Chem. Res. Toxicol. , vol.19 , pp. 1030-1039
    • Xue, Y.1    Li, H.2    Ung, C.Y.3    Yap, C.W.4    Chen, Y.Z.5
  • 94
    • 28844500372 scopus 로고    scopus 로고
    • Application of support vector machine (SVM) for prediction toxic activity of different data sets
    • Zhao C.Y., Zhang H.X., Zhang X.Y., Liu M.C., Hu Z.D., Fan B.T. Application of support vector machine (SVM) for prediction toxic activity of different data sets. Toxicology 2006, 217:105-119.
    • (2006) Toxicology , vol.217 , pp. 105-119
    • Zhao, C.Y.1    Zhang, H.X.2    Zhang, X.Y.3    Liu, M.C.4    Hu, Z.D.5    Fan, B.T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.