|
Volumn 14, Issue 11, 2001, Pages 1535-1545
|
Linear regression and computational neural network prediction of tetrahymena acute toxicity for aromatic compounds from molecular structure
|
Author keywords
[No Author keywords available]
|
Indexed keywords
SOLVENT;
ALGORITHM;
ARTICLE;
ARTIFICIAL NEURAL NETWORK;
CELL GROWTH;
GEOMETRY;
GROWTH INHIBITION;
MATHEMATICAL MODEL;
MOLECULAR DYNAMICS;
NONLINEAR SYSTEM;
QUANTITATIVE STRUCTURE ACTIVITY RELATION;
QUANTUM MECHANICS;
REGRESSION ANALYSIS;
SYSTEM ANALYSIS;
TETRAHYMENA;
TOXICITY;
VALIDATION PROCESS;
ANIMALS;
ELECTROCHEMISTRY;
FORECASTING;
HYDROCARBONS, AROMATIC;
MODELS, THEORETICAL;
NEURAL NETWORKS (COMPUTER);
ORGANIC CHEMICALS;
REGRESSION ANALYSIS;
STRUCTURE-ACTIVITY RELATIONSHIP;
TETRAHYMENA;
TOXICITY TESTS;
INVERTEBRATA;
MYXOZOA;
PROTOZOA;
TETRAHYMENA;
|
EID: 0035190409
PISSN: 0893228X
EISSN: None
Source Type: Journal
DOI: 10.1021/tx010101q Document Type: Article |
Times cited : (29)
|
References (42)
|