메뉴 건너뛰기




Volumn 96, Issue 1, 2009, Pages 43-48

Predicting toxic action mechanisms of phenols using AdaBoost Learner

Author keywords

AdaBoost; Artificial neural networks (ANNs); K nearest neighbors (KNNs); Phenols; Structure Activity Relationships (SARs); Support vector machine(SVM); Toxic action mechanisms

Indexed keywords

PHENOL DERIVATIVE;

EID: 61749099319     PISSN: 01697439     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.chemolab.2008.11.003     Document Type: Article
Times cited : (32)

References (42)
  • 4
    • 0343396375 scopus 로고    scopus 로고
    • Multivariate correlation analysis - a method for the analysis of multidimensional time series in environmental studies
    • Geiss S., and Einax J. Multivariate correlation analysis - a method for the analysis of multidimensional time series in environmental studies. Chemometrics and Intelligent Laboratory Systems 32 (1996) 57-65
    • (1996) Chemometrics and Intelligent Laboratory Systems , vol.32 , pp. 57-65
    • Geiss, S.1    Einax, J.2
  • 6
    • 0031005580 scopus 로고    scopus 로고
    • Characterizing environmental pressures along the US/Mexico border: an application of the Toxics Release Inventory in environmentrics
    • LoPresti C.A., and Obrien R.F. Characterizing environmental pressures along the US/Mexico border: an application of the Toxics Release Inventory in environmentrics. Chemometrics and Intelligent Laboratory Systems 37 (1997) 95-111
    • (1997) Chemometrics and Intelligent Laboratory Systems , vol.37 , pp. 95-111
    • LoPresti, C.A.1    Obrien, R.F.2
  • 9
    • 34250622418 scopus 로고    scopus 로고
    • A non-statistical approach in systematic error estimation at some metal ions determination in environmental objects by stripping voltammetry
    • Romanenko S.V., Larina L.N., and Larin S.L. A non-statistical approach in systematic error estimation at some metal ions determination in environmental objects by stripping voltammetry. Chemometrics and Intelligent Laboratory Systems 88 (2007) 11-17
    • (2007) Chemometrics and Intelligent Laboratory Systems , vol.88 , pp. 11-17
    • Romanenko, S.V.1    Larina, L.N.2    Larin, S.L.3
  • 10
    • 37249035097 scopus 로고    scopus 로고
    • Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks
    • Kahn I., Sild S., and Maran U. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks. Journal of Chemical Information Modelling 47 (2007) 2271-2279
    • (2007) Journal of Chemical Information Modelling , vol.47 , pp. 2271-2279
    • Kahn, I.1    Sild, S.2    Maran, U.3
  • 14
    • 0023160928 scopus 로고
    • Fish acute toxicity syndromes and their use in the Qsar approach to hazard assessment
    • McKim J.M., Bradbury S.P., and Niemi G.J. Fish acute toxicity syndromes and their use in the Qsar approach to hazard assessment. Environmental Health Perspectives 71 (1987) 171-186
    • (1987) Environmental Health Perspectives , vol.71 , pp. 171-186
    • McKim, J.M.1    Bradbury, S.P.2    Niemi, G.J.3
  • 15
    • 0025071340 scopus 로고
    • Rules for distinguishing toxicants that cause type-I and type-II narcosis syndromes
    • Veith G.D., and Broderius S.J. Rules for distinguishing toxicants that cause type-I and type-II narcosis syndromes. Environmental Health Perspectives 87 (1990) 207-211
    • (1990) Environmental Health Perspectives , vol.87 , pp. 207-211
    • Veith, G.D.1    Broderius, S.J.2
  • 17
    • 0036000566 scopus 로고    scopus 로고
    • Determining the mechanisms of toxic action of phenols to Tetrahymena pyriformis
    • Ren S. Determining the mechanisms of toxic action of phenols to Tetrahymena pyriformis. Environmental Toxicology 17 (2002) 119-127
    • (2002) Environmental Toxicology , vol.17 , pp. 119-127
    • Ren, S.1
  • 20
    • 34249706279 scopus 로고    scopus 로고
    • Novel view on predicting acute toxicity: decomposing toxicity data in species vulnerability and chemical potency
    • Jager T., Posthuma L., de Zwart D., and van de Meent D. Novel view on predicting acute toxicity: decomposing toxicity data in species vulnerability and chemical potency. Ecotoxicology and Environmental Safety 67 (2007) 311-322
    • (2007) Ecotoxicology and Environmental Safety , vol.67 , pp. 311-322
    • Jager, T.1    Posthuma, L.2    de Zwart, D.3    van de Meent, D.4
  • 22
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 (1997) 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 23
    • 30144442694 scopus 로고    scopus 로고
    • Ensemble classifier system based on ant colony algorithm and its application in chemical pattern classification
    • He Y.J., Chen D.Z., and Zhao W.X. Ensemble classifier system based on ant colony algorithm and its application in chemical pattern classification. Chemometrics and Intelligent Laboratory Systems 80 (2006) 39-49
    • (2006) Chemometrics and Intelligent Laboratory Systems , vol.80 , pp. 39-49
    • He, Y.J.1    Chen, D.Z.2    Zhao, W.X.3
  • 25
    • 0036882521 scopus 로고    scopus 로고
    • Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis
    • Cronin M.T.D., Aptula A.O., Duffy J.C., Netzeva T.I., Rowe P.H., Valkova I.V., and Schultz T.W. Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 49 (2002) 1201-1221
    • (2002) Chemosphere , vol.49 , pp. 1201-1221
    • Cronin, M.T.D.1    Aptula, A.O.2    Duffy, J.C.3    Netzeva, T.I.4    Rowe, P.H.5    Valkova, I.V.6    Schultz, T.W.7
  • 26
    • 0642336892 scopus 로고    scopus 로고
    • Ecotoxicity prediction using mechanism- and non-mechanism-based QSARs: a preliminary study
    • Ren S. Ecotoxicity prediction using mechanism- and non-mechanism-based QSARs: a preliminary study. Chemosphere 53 (2003) 1053-1065
    • (2003) Chemosphere , vol.53 , pp. 1053-1065
    • Ren, S.1
  • 27
    • 1542680908 scopus 로고    scopus 로고
    • Margin maximization with feed-forward neural networks: a comparative study with SVM and AdaBoost
    • Romero E., Marquez L., and Carreras X. Margin maximization with feed-forward neural networks: a comparative study with SVM and AdaBoost. Neurocomputing 57 (2004) 313-344
    • (2004) Neurocomputing , vol.57 , pp. 313-344
    • Romero, E.1    Marquez, L.2    Carreras, X.3
  • 28
    • 0037031029 scopus 로고    scopus 로고
    • A geometric approach to leveraging weak learners
    • Duffy N., and Helmbold D. A geometric approach to leveraging weak learners. Theoretical Computer Science 284 (2002) 67-108
    • (2002) Theoretical Computer Science , vol.284 , pp. 67-108
    • Duffy, N.1    Helmbold, D.2
  • 32
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., and L.H. Feature selection for classification. Intelligent Data Analysis 1 (1997) 131-156
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    L.H2
  • 35
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H.C., Long F.H., and Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis 27 (2005) 1226-1238
    • (2005) IEEE Transactions on Pattern Analysis , vol.27 , pp. 1226-1238
    • Peng, H.C.1    Long, F.H.2    Ding, C.3
  • 36
    • 0031381525 scopus 로고    scopus 로고
    • Wrapper for feature subset selection
    • Kohavi R., and John G. Wrapper for feature subset selection. Artificial Intelligence 1-2 (1997) 273-324
    • (1997) Artificial Intelligence , vol.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 41
    • 0004075015 scopus 로고
    • Wiley-Interscience, New York, London
    • Pullman B. Quantum Biochemistry (1971), Wiley-Interscience, New York, London
    • (1971) Quantum Biochemistry
    • Pullman, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.