메뉴 건너뛰기




Volumn 186, Issue 5, 2014, Pages 2749-2765

Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data

Author keywords

Kernel partial least squares regression; Kernel principal component regression; Kernel ridge regression; Nonlinearity; Support vector regression

Indexed keywords

LEAST SQUARES APPROXIMATIONS; METADATA; PRINCIPAL COMPONENT ANALYSIS;

EID: 84898902434     PISSN: 01676369     EISSN: 15732959     Source Type: Journal    
DOI: 10.1007/s10661-013-3576-6     Document Type: Article
Times cited : (11)

References (53)
  • 1
    • 84875539889 scopus 로고    scopus 로고
    • Testing for linear and nonlinear causality between crude oil price changes and stock market returns
    • Anoruo, E. (2011). Testing for linear and nonlinear causality between crude oil price changes and stock market returns. International Journal of Economic Sciences and Applied Research, 4, 75-92.
    • (2011) International Journal of Economic Sciences and Applied Research , vol.4 , pp. 75-92
    • Anoruo, E.1
  • 2
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • 10.1214/09-SS054
    • Arlot, S.; Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistical Survey, 4, 40-79.
    • (2010) Statistical Survey , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 3
    • 78650311079 scopus 로고    scopus 로고
    • Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water - A case study
    • 10.1016/j.chemolab.2010.08.005
    • Basant, N.; Gupta, S.; Malik, A.; Singh, K. P. (2010). Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water - a case study. Chemometrics and Intelligent Laboratory Systems, 104, 172-180.
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.104 , pp. 172-180
    • Basant, N.1    Gupta, S.2    Malik, A.3    Singh, K.P.4
  • 4
    • 85071343664 scopus 로고    scopus 로고
    • A test for independence based on the correlation dimension
    • 10.1080/07474939608800353
    • Brock, W. A.; Dechert, W.; Scheinkman, J. A.; LeBaron, B. (1996). A test for independence based on the correlation dimension. Econometric Reviews, 15, 197-235.
    • (1996) Econometric Reviews , vol.15 , pp. 197-235
    • Brock, W.A.1    Dechert, W.2    Scheinkman, J.A.3    Lebaron, B.4
  • 7
    • 84893135042 scopus 로고    scopus 로고
    • Artificial neural network modeling of dissolved oxygen in reservoir
    • 10.1007/s10661-013-3450-6
    • Chen, W.-B.; Liu, W.-C. (2013). Artificial neural network modeling of dissolved oxygen in reservoir. Environmental Monitoring and Assessment. doi: 10.1007/s10661-013-3450-6.
    • (2013) Environmental Monitoring and Assessment
    • Chen, W.-B.1    Liu, W.-C.2
  • 8
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • 10.1016/S0893-6080(03)00169-2
    • Cherkassky, V.; Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17, 113-126.
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 9
    • 79955043506 scopus 로고    scopus 로고
    • Kernel regression for FMRI pattern prediction
    • 10.1016/j.neuroimage.2010.03.058
    • Chu, C.; Ni, Y.; Tan, G.; Saunders, C. J.; Ashburner, J. (2011). Kernel regression for FMRI pattern prediction. NeuroImage, 56, 662-673.
    • (2011) NeuroImage , vol.56 , pp. 662-673
    • Chu, C.1    Ni, Y.2    Tan, G.3    Saunders, C.J.4    Ashburner, J.5
  • 11
    • 78651414250 scopus 로고    scopus 로고
    • Feasibility study on the use of attenuated total reflectance mid-infrared for analysis of compositional parameters in wine
    • 10.1016/j.foodres.2010.10.043
    • Cozzolino, D.; Cynkar, W. U.; Shah, N.; Smith, P. (2011). Feasibility study on the use of attenuated total reflectance mid-infrared for analysis of compositional parameters in wine. Food Research International, 44, 181-186.
    • (2011) Food Research International , vol.44 , pp. 181-186
    • Cozzolino, D.1    Cynkar, W.U.2    Shah, N.3    Smith, P.4
  • 14
    • 78751609525 scopus 로고    scopus 로고
    • Predictions of oil/chemical tanker main design parameters using computational intelligence techniques
    • 10.1016/j.asoc.2010.08.015
    • Ekinci, S.; Celebi, U. B.; Bal, M.; Amasyali, M. F.; Boyaci, U. K. (2011). Predictions of oil/chemical tanker main design parameters using computational intelligence techniques. Applied Soft Computing, 11, 2356-2366.
    • (2011) Applied Soft Computing , vol.11 , pp. 2356-2366
    • Ekinci, S.1    Celebi, U.B.2    Bal, M.3    Amasyali, M.F.4    Boyaci, U.K.5
  • 15
    • 84895793454 scopus 로고    scopus 로고
    • Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks
    • 10.1007/s10661-013-3476-9
    • Evrendilek, F.; Karakaya, N. (2013). Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks. Environmental Monitoring and Assessment. doi: 10.1007/s10661-013-3476-9.
    • (2013) Environmental Monitoring and Assessment
    • Evrendilek, F.1    Karakaya, N.2
  • 16
    • 84891328285 scopus 로고    scopus 로고
    • Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inferencesystems (ANFIS): A comparative study
    • 10.1007/s10661-013-3402-1
    • Heddam, S. (2013). Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inferencesystems (ANFIS): a comparative study. Environmental Monitoring and Assessment. doi: 10.1007/s10661-013-3402-1.
    • (2013) Environmental Monitoring and Assessment
    • Heddam, S.1
  • 19
    • 21244505315 scopus 로고    scopus 로고
    • Monitoring of an industrial liquid-liquid extraction system with kernel-based methods
    • 10.1016/j.hydromet.2005.03.003
    • Jemwa, G. T.; Aldrich, C. (2005). Monitoring of an industrial liquid-liquid extraction system with kernel-based methods. Hydrometallurgy, 78, 41-51.
    • (2005) Hydrometallurgy , vol.78 , pp. 41-51
    • Jemwa, G.T.1    Aldrich, C.2
  • 22
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machine and its application in chemistry
    • 10.1016/j.chemolab.2008.10.007
    • Li, H.; Liang, Y.; Xu, Q. (2009). Support vector machine and its application in chemistry. Chemometrics and Intelligent Laboratory Systems, 95, 188-198.
    • (2009) Chemometrics and Intelligent Laboratory Systems , vol.95 , pp. 188-198
    • Li, H.1    Liang, Y.2    Xu, Q.3
  • 23
    • 41249085947 scopus 로고    scopus 로고
    • Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps
    • 10.1111/j.1365-246X.2008.03720.x
    • Lin, F. C.; Moschetti, M. P.; Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysics Journal International, 173, 281-298.
    • (2008) Geophysics Journal International , vol.173 , pp. 281-298
    • Lin, F.C.1    Moschetti, M.P.2    Ritzwoller, M.H.3
  • 24
    • 0002941010 scopus 로고    scopus 로고
    • Support vector machines for dynamic reconstruction of a chaotic system
    • B. Scholkopf J. Burges A. Smola (eds) MIT Press Cambridge, MA
    • Mattera, D.; Haykin, S. (1999). Support vector machines for dynamic reconstruction of a chaotic system. In B. Scholkopf, J. Burges, & A. Smola (Eds.), Advances in kernel methods: support vector machine. Cambridge, MA: MIT Press.
    • (1999) Advances in Kernel Methods: Support Vector Machine
    • Mattera, D.1    Haykin, S.2
  • 26
    • 3142694032 scopus 로고    scopus 로고
    • Application of ridge regression when the model is inherently imperfect: A case study of phase equilibrium
    • 10.1016/j.chemolab.2004.01.015
    • Ngo, S. H.; Kemeny, S.; Deak, A. (2004). Application of ridge regression when the model is inherently imperfect: a case study of phase equilibrium. Chemometrics and Intelligent Laboratory Systems, 72, 185-194.
    • (2004) Chemometrics and Intelligent Laboratory Systems , vol.72 , pp. 185-194
    • Ngo, S.H.1    Kemeny, S.2    Deak, A.3
  • 27
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
    • 10.1016/j.jhydrol.2011.02.021
    • Noori, R.; Karbassi, A. R.; Moghaddamnia, K.; Han, D.; Zokaei-Ashtiani, M. H.; Farokhnia, A.; et al. (2011). Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401, 177-189.
    • (2011) Journal of Hydrology , vol.401 , pp. 177-189
    • Noori, R.1    Karbassi, A.R.2    Moghaddamnia, K.3    Han, D.4    Zokaei-Ashtiani, M.H.5    Farokhnia, A.6
  • 28
    • 67649185235 scopus 로고    scopus 로고
    • The kernel method to compute the intensity of segregation for reactive pollutants: Mathematical formulation
    • 10.1016/j.atmosenv.2009.04.049
    • Pagnini, G. (2009). The kernel method to compute the intensity of segregation for reactive pollutants: mathematical formulation. Atmospheric Environment, 43, 3691-3698.
    • (2009) Atmospheric Environment , vol.43 , pp. 3691-3698
    • Pagnini, G.1
  • 29
    • 43849095644 scopus 로고    scopus 로고
    • Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds
    • 10.1016/j.chemolab.2008.03.002
    • Pan, Y.; Jiang, J.; Wang, R.; Cao, H.; Cui, Y. (2008). Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds. Chemometrics and Intelligent Laboratory Systems, 92, 169-178.
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.92 , pp. 169-178
    • Pan, Y.1    Jiang, J.2    Wang, R.3    Cao, H.4    Cui, Y.5
  • 30
    • 80053386153 scopus 로고    scopus 로고
    • Opening the kernel of kernel partial least squares and support vector machines
    • 10.1016/j.aca.2011.04.025
    • Postama, G. J.; Krooshof, P. W. T.; Buydens, L. M. C. (2011). Opening the kernel of kernel partial least squares and support vector machines. Analytica Chimica Acta, 705, 123-134.
    • (2011) Analytica Chimica Acta , vol.705 , pp. 123-134
    • Postama, G.J.1    Krooshof, P.W.T.2    Buydens, L.M.C.3
  • 31
    • 0038259120 scopus 로고    scopus 로고
    • Kernel partial least squares in reproducing kernel Hilbert space
    • Rosipal, R.; Trejo, L. J. (2001). Kernel partial least squares in reproducing kernel Hilbert space. Journal of Machine Learning Research, 2, 97-123.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 32
    • 0035561486 scopus 로고    scopus 로고
    • Kernel PCA for feature extraction and de-noising in nonlinear regression
    • 10.1007/s521-001-8051-z
    • Rosipal, R.; Girolami, M.; Trejo, L. J.; Cichocki, A. (2001). Kernel PCA for feature extraction and de-noising in nonlinear regression. Neural Computing and Applications, 10, 231-243.
    • (2001) Neural Computing and Applications , vol.10 , pp. 231-243
    • Rosipal, R.1    Girolami, M.2    Trejo, L.J.3    Cichocki, A.4
  • 34
    • 78651536625 scopus 로고    scopus 로고
    • Prediction of dissolved oxygen in rivers using a Wang-Mendel method - Case study of Au Sable River
    • Shaghaghian, T. (2010). Prediction of dissolved oxygen in rivers using a Wang-Mendel method - case study of Au Sable River. World Academy of Science, Engineering and Technology, 38, 795-802.
    • (2010) World Academy of Science, Engineering and Technology , vol.38 , pp. 795-802
    • Shaghaghian, T.1
  • 35
    • 4544340267 scopus 로고    scopus 로고
    • Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-a case study
    • 10.1016/j.watres.2004.06.011
    • Singh, K. P.; Malik, A.; Mohan, D.; Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-a case study. Water Research, 38, 3980-3992.
    • (2004) Water Research , vol.38 , pp. 3980-3992
    • Singh, K.P.1    Malik, A.2    Mohan, D.3    Sinha, S.4
  • 36
    • 33645515009 scopus 로고    scopus 로고
    • Chemometric analysis of hydro-chemical data of an alluvial river - A case study
    • 10.1007/s11270-005-9010-0
    • Singh, K. P.; Malik, A.; Singh, V. K. (2006). Chemometric analysis of hydro-chemical data of an alluvial river - a case study. Water, Air, & Soil Pollution, 170, 383-404.
    • (2006) Water, Air, & Soil Pollution , vol.170 , pp. 383-404
    • Singh, K.P.1    Malik, A.2    Singh, V.K.3
  • 37
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality - A case study
    • 10.1016/j.ecolmodel.2009.01.004
    • Singh, K. P.; Basant, A.; Malik, A.; Jain, G. (2009). Artificial neural network modeling of the river water quality - a case study. Ecological Modeling, 220, 888-895.
    • (2009) Ecological Modeling , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 38
    • 71749090211 scopus 로고    scopus 로고
    • Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches - A case study
    • 10.1016/j.aca.2009.11.001
    • Singh, K. P.; Basant, N.; Malik, A.; Jain, G. (2010). Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches - a case study. Analytica Chimica Acta, 658, 1-11.
    • (2010) Analytica Chimica Acta , vol.658 , pp. 1-11
    • Singh, K.P.1    Basant, N.2    Malik, A.3    Jain, G.4
  • 39
    • 80052261350 scopus 로고    scopus 로고
    • Support vector machines in water quality management
    • 10.1016/j.aca.2011.07.027
    • Singh, K. P.; Basant, N.; Gupta, S. (2011). Support vector machines in water quality management. Analytica Chimica Acta, 703, 152-162.
    • (2011) Analytica Chimica Acta , vol.703 , pp. 152-162
    • Singh, K.P.1    Basant, N.2    Gupta, S.3
  • 40
    • 84860697230 scopus 로고    scopus 로고
    • Linear and nonlinear modeling approaches for urban air quality prediction
    • 10.1016/j.scitotenv.2012.03.076
    • Singh, K. P.; Gupta, S.; Kumar, A.; Shukla, S. P. (2012). Linear and nonlinear modeling approaches for urban air quality prediction. Science of the Total Environment, 426, 244-255.
    • (2012) Science of the Total Environment , vol.426 , pp. 244-255
    • Singh, K.P.1    Gupta, S.2    Kumar, A.3    Shukla, S.P.4
  • 41
    • 84883717859 scopus 로고    scopus 로고
    • Identifying pollution sources and predicting urban air quality using ensemble learning methods
    • 10.1016/j.atmosenv.2013.08.023
    • Singh, K. P.; Gupta, S.; Rai, P. (2013). Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmospheric Environment, 80, 426-437.
    • (2013) Atmospheric Environment , vol.80 , pp. 426-437
    • Singh, K.P.1    Gupta, S.2    Rai, P.3
  • 44
    • 20444505293 scopus 로고    scopus 로고
    • Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
    • 10.1016/j.aca.2004.12.024
    • Ustun, B.; Melssen, W. J.; Oudenhuijzen, M.; Buydens, L. M. C. (2005). Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica Acta, 544, 292-305.
    • (2005) Analytica Chimica Acta , vol.544 , pp. 292-305
    • Ustun, B.1    Melssen, W.J.2    Oudenhuijzen, M.3    Buydens, L.M.C.4
  • 46
    • 0345688978 scopus 로고    scopus 로고
    • Determination of the spread parameter in the Gaussian kernel for classification and regression
    • 10.1016/S0925-2312(02)00632-X
    • Wang, W.; Xu, Z.; Lu, W.; Zhang, X. (2003). Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55, 643-663.
    • (2003) Neurocomputing , vol.55 , pp. 643-663
    • Wang, W.1    Xu, Z.2    Lu, W.3    Zhang, X.4
  • 47
    • 34447649349 scopus 로고    scopus 로고
    • Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine
    • 10.1016/j.talanta.2007.03.037
    • Wang, J.; Du, H.; Liu, H.; Yao, X.; Hu, Z.; Fan, B. (2007). Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine. Talanta, 73, 147-156.
    • (2007) Talanta , vol.73 , pp. 147-156
    • Wang, J.1    Du, H.2    Liu, H.3    Yao, X.4    Hu, Z.5    Fan, B.6
  • 48
    • 84878347590 scopus 로고    scopus 로고
    • Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China
    • 10.1007/s10661-012-2874-8
    • Wen, X.; Fang, J.; Diao, M.; Zhang, C. (2013). Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environmental Monitoring and Assessment, 185(5), 4361-4371.
    • (2013) Environmental Monitoring and Assessment , vol.185 , Issue.5 , pp. 4361-4371
    • Wen, X.1    Fang, J.2    Diao, M.3    Zhang, C.4
  • 49
    • 56149125295 scopus 로고    scopus 로고
    • On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant
    • 10.1016/j.jhazmat.2008.04.004
    • Woo, S. H.; Jeon, C. O.; Yun, Y. S.; Choi, H.; Lee, C. S.; Lee, D. S. (2009). On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant. Journal of Hazardous Materials, 161, 538-544.
    • (2009) Journal of Hazardous Materials , vol.161 , pp. 538-544
    • Woo, S.H.1    Jeon, C.O.2    Yun, Y.S.3    Choi, H.4    Lee, C.S.5    Lee, D.S.6
  • 50
    • 78149468553 scopus 로고    scopus 로고
    • Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
    • 10.1016/j.ces.2010.10.008
    • Zhang, Y.; Ma, C. (2011). Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chemical Engineering Science, 66, 64-72.
    • (2011) Chemical Engineering Science , vol.66 , pp. 64-72
    • Zhang, Y.1    Ma, C.2
  • 51
    • 78149465043 scopus 로고    scopus 로고
    • Process data modeling using modified kernel partial least squares
    • 10.1016/j.ces.2010.09.009
    • Zhang, Y.; Teng, Y. (2010). Process data modeling using modified kernel partial least squares. Chemical Engineering Science, 65, 6353-6361.
    • (2010) Chemical Engineering Science , vol.65 , pp. 6353-6361
    • Zhang, Y.1    Teng, Y.2
  • 53


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.