-
1
-
-
84875539889
-
Testing for linear and nonlinear causality between crude oil price changes and stock market returns
-
Anoruo, E. (2011). Testing for linear and nonlinear causality between crude oil price changes and stock market returns. International Journal of Economic Sciences and Applied Research, 4, 75-92.
-
(2011)
International Journal of Economic Sciences and Applied Research
, vol.4
, pp. 75-92
-
-
Anoruo, E.1
-
2
-
-
77956649096
-
A survey of cross-validation procedures for model selection
-
10.1214/09-SS054
-
Arlot, S.; Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistical Survey, 4, 40-79.
-
(2010)
Statistical Survey
, vol.4
, pp. 40-79
-
-
Arlot, S.1
Celisse, A.2
-
3
-
-
78650311079
-
Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water - A case study
-
10.1016/j.chemolab.2010.08.005
-
Basant, N.; Gupta, S.; Malik, A.; Singh, K. P. (2010). Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water - a case study. Chemometrics and Intelligent Laboratory Systems, 104, 172-180.
-
(2010)
Chemometrics and Intelligent Laboratory Systems
, vol.104
, pp. 172-180
-
-
Basant, N.1
Gupta, S.2
Malik, A.3
Singh, K.P.4
-
4
-
-
85071343664
-
A test for independence based on the correlation dimension
-
10.1080/07474939608800353
-
Brock, W. A.; Dechert, W.; Scheinkman, J. A.; LeBaron, B. (1996). A test for independence based on the correlation dimension. Econometric Reviews, 15, 197-235.
-
(1996)
Econometric Reviews
, vol.15
, pp. 197-235
-
-
Brock, W.A.1
Dechert, W.2
Scheinkman, J.A.3
Lebaron, B.4
-
5
-
-
79955653069
-
Exploring nonlinear relationships in chemical data using kernel-based methods
-
10.1016/j.chemolab.2011.02.004
-
Cao, D. S.; Liang, Y. Z.; Xu, Q. S.; Hu, Q. N.; Zhang, L. X.; Fu, G. H. (2011). Exploring nonlinear relationships in chemical data using kernel-based methods. Chemometrics and Intelligent Laboratory Systems, 107, 106-115.
-
(2011)
Chemometrics and Intelligent Laboratory Systems
, vol.107
, pp. 106-115
-
-
Cao, D.S.1
Liang, Y.Z.2
Xu, Q.S.3
Hu, Q.N.4
Zhang, L.X.5
Fu, G.H.6
-
7
-
-
84893135042
-
Artificial neural network modeling of dissolved oxygen in reservoir
-
10.1007/s10661-013-3450-6
-
Chen, W.-B.; Liu, W.-C. (2013). Artificial neural network modeling of dissolved oxygen in reservoir. Environmental Monitoring and Assessment. doi: 10.1007/s10661-013-3450-6.
-
(2013)
Environmental Monitoring and Assessment
-
-
Chen, W.-B.1
Liu, W.-C.2
-
8
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
10.1016/S0893-6080(03)00169-2
-
Cherkassky, V.; Ma, Y. (2004). Practical selection of SVM parameters and noise estimation for SVM regression. Neural Networks, 17, 113-126.
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
9
-
-
79955043506
-
Kernel regression for FMRI pattern prediction
-
10.1016/j.neuroimage.2010.03.058
-
Chu, C.; Ni, Y.; Tan, G.; Saunders, C. J.; Ashburner, J. (2011). Kernel regression for FMRI pattern prediction. NeuroImage, 56, 662-673.
-
(2011)
NeuroImage
, vol.56
, pp. 662-673
-
-
Chu, C.1
Ni, Y.2
Tan, G.3
Saunders, C.J.4
Ashburner, J.5
-
11
-
-
78651414250
-
Feasibility study on the use of attenuated total reflectance mid-infrared for analysis of compositional parameters in wine
-
10.1016/j.foodres.2010.10.043
-
Cozzolino, D.; Cynkar, W. U.; Shah, N.; Smith, P. (2011). Feasibility study on the use of attenuated total reflectance mid-infrared for analysis of compositional parameters in wine. Food Research International, 44, 181-186.
-
(2011)
Food Research International
, vol.44
, pp. 181-186
-
-
Cozzolino, D.1
Cynkar, W.U.2
Shah, N.3
Smith, P.4
-
13
-
-
33847289857
-
TOMCAT: A MATLAB toolbox for multivariate calibration techniques
-
10.1016/j.chemolab.2006.03.006
-
Daszykowski, M.; Semeels, S.; Kaczmarck, K.; Van Espen, P.; Croux, C.; Walczak, B. (2007). TOMCAT: A MATLAB toolbox for multivariate calibration techniques. Chemometrics and Intelligent Laboratory Systems, 85, 269-277.
-
(2007)
Chemometrics and Intelligent Laboratory Systems
, vol.85
, pp. 269-277
-
-
Daszykowski, M.1
Semeels, S.2
Kaczmarck, K.3
Van Espen, P.4
Croux, C.5
Walczak, B.6
-
14
-
-
78751609525
-
Predictions of oil/chemical tanker main design parameters using computational intelligence techniques
-
10.1016/j.asoc.2010.08.015
-
Ekinci, S.; Celebi, U. B.; Bal, M.; Amasyali, M. F.; Boyaci, U. K. (2011). Predictions of oil/chemical tanker main design parameters using computational intelligence techniques. Applied Soft Computing, 11, 2356-2366.
-
(2011)
Applied Soft Computing
, vol.11
, pp. 2356-2366
-
-
Ekinci, S.1
Celebi, U.B.2
Bal, M.3
Amasyali, M.F.4
Boyaci, U.K.5
-
15
-
-
84895793454
-
Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks
-
10.1007/s10661-013-3476-9
-
Evrendilek, F.; Karakaya, N. (2013). Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks. Environmental Monitoring and Assessment. doi: 10.1007/s10661-013-3476-9.
-
(2013)
Environmental Monitoring and Assessment
-
-
Evrendilek, F.1
Karakaya, N.2
-
16
-
-
84891328285
-
Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inferencesystems (ANFIS): A comparative study
-
10.1007/s10661-013-3402-1
-
Heddam, S. (2013). Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inferencesystems (ANFIS): a comparative study. Environmental Monitoring and Assessment. doi: 10.1007/s10661-013-3402-1.
-
(2013)
Environmental Monitoring and Assessment
-
-
Heddam, S.1
-
18
-
-
0141958733
-
Feature extraction and denoising using kernel PCA
-
10.1016/S0009-2509(03)00340-3
-
Jade, A. M.; Srikanth, B.; Jayaraman, V.; Kulkurani, B. D.; Jog, J. P.; Priya, L. (2003). Feature extraction and denoising using kernel PCA. Chemical Engineering Science, 58, 4441-4448.
-
(2003)
Chemical Engineering Science
, vol.58
, pp. 4441-4448
-
-
Jade, A.M.1
Srikanth, B.2
Jayaraman, V.3
Kulkurani, B.D.4
Jog, J.P.5
Priya, L.6
-
19
-
-
21244505315
-
Monitoring of an industrial liquid-liquid extraction system with kernel-based methods
-
10.1016/j.hydromet.2005.03.003
-
Jemwa, G. T.; Aldrich, C. (2005). Monitoring of an industrial liquid-liquid extraction system with kernel-based methods. Hydrometallurgy, 78, 41-51.
-
(2005)
Hydrometallurgy
, vol.78
, pp. 41-51
-
-
Jemwa, G.T.1
Aldrich, C.2
-
20
-
-
25844445939
-
Iterative kernel principal component analysis
-
10.1109/TPAMI.2005.181
-
Kim, K. I.; Franz, M. O.; Scholkopf, B. (2005). Iterative kernel principal component analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27, 1351-1366.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, pp. 1351-1366
-
-
Kim, K.I.1
Franz, M.O.2
Scholkopf, B.3
-
22
-
-
58149203252
-
Support vector machine and its application in chemistry
-
10.1016/j.chemolab.2008.10.007
-
Li, H.; Liang, Y.; Xu, Q. (2009). Support vector machine and its application in chemistry. Chemometrics and Intelligent Laboratory Systems, 95, 188-198.
-
(2009)
Chemometrics and Intelligent Laboratory Systems
, vol.95
, pp. 188-198
-
-
Li, H.1
Liang, Y.2
Xu, Q.3
-
23
-
-
41249085947
-
Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps
-
10.1111/j.1365-246X.2008.03720.x
-
Lin, F. C.; Moschetti, M. P.; Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysics Journal International, 173, 281-298.
-
(2008)
Geophysics Journal International
, vol.173
, pp. 281-298
-
-
Lin, F.C.1
Moschetti, M.P.2
Ritzwoller, M.H.3
-
24
-
-
0002941010
-
Support vector machines for dynamic reconstruction of a chaotic system
-
B. Scholkopf J. Burges A. Smola (eds) MIT Press Cambridge, MA
-
Mattera, D.; Haykin, S. (1999). Support vector machines for dynamic reconstruction of a chaotic system. In B. Scholkopf, J. Burges, & A. Smola (Eds.), Advances in kernel methods: support vector machine. Cambridge, MA: MIT Press.
-
(1999)
Advances in Kernel Methods: Support Vector Machine
-
-
Mattera, D.1
Haykin, S.2
-
26
-
-
3142694032
-
Application of ridge regression when the model is inherently imperfect: A case study of phase equilibrium
-
10.1016/j.chemolab.2004.01.015
-
Ngo, S. H.; Kemeny, S.; Deak, A. (2004). Application of ridge regression when the model is inherently imperfect: a case study of phase equilibrium. Chemometrics and Intelligent Laboratory Systems, 72, 185-194.
-
(2004)
Chemometrics and Intelligent Laboratory Systems
, vol.72
, pp. 185-194
-
-
Ngo, S.H.1
Kemeny, S.2
Deak, A.3
-
27
-
-
79953796890
-
Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
-
10.1016/j.jhydrol.2011.02.021
-
Noori, R.; Karbassi, A. R.; Moghaddamnia, K.; Han, D.; Zokaei-Ashtiani, M. H.; Farokhnia, A.; et al. (2011). Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. Journal of Hydrology, 401, 177-189.
-
(2011)
Journal of Hydrology
, vol.401
, pp. 177-189
-
-
Noori, R.1
Karbassi, A.R.2
Moghaddamnia, K.3
Han, D.4
Zokaei-Ashtiani, M.H.5
Farokhnia, A.6
-
28
-
-
67649185235
-
The kernel method to compute the intensity of segregation for reactive pollutants: Mathematical formulation
-
10.1016/j.atmosenv.2009.04.049
-
Pagnini, G. (2009). The kernel method to compute the intensity of segregation for reactive pollutants: mathematical formulation. Atmospheric Environment, 43, 3691-3698.
-
(2009)
Atmospheric Environment
, vol.43
, pp. 3691-3698
-
-
Pagnini, G.1
-
29
-
-
43849095644
-
Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds
-
10.1016/j.chemolab.2008.03.002
-
Pan, Y.; Jiang, J.; Wang, R.; Cao, H.; Cui, Y. (2008). Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds. Chemometrics and Intelligent Laboratory Systems, 92, 169-178.
-
(2008)
Chemometrics and Intelligent Laboratory Systems
, vol.92
, pp. 169-178
-
-
Pan, Y.1
Jiang, J.2
Wang, R.3
Cao, H.4
Cui, Y.5
-
30
-
-
80053386153
-
Opening the kernel of kernel partial least squares and support vector machines
-
10.1016/j.aca.2011.04.025
-
Postama, G. J.; Krooshof, P. W. T.; Buydens, L. M. C. (2011). Opening the kernel of kernel partial least squares and support vector machines. Analytica Chimica Acta, 705, 123-134.
-
(2011)
Analytica Chimica Acta
, vol.705
, pp. 123-134
-
-
Postama, G.J.1
Krooshof, P.W.T.2
Buydens, L.M.C.3
-
31
-
-
0038259120
-
Kernel partial least squares in reproducing kernel Hilbert space
-
Rosipal, R.; Trejo, L. J. (2001). Kernel partial least squares in reproducing kernel Hilbert space. Journal of Machine Learning Research, 2, 97-123.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 97-123
-
-
Rosipal, R.1
Trejo, L.J.2
-
32
-
-
0035561486
-
Kernel PCA for feature extraction and de-noising in nonlinear regression
-
10.1007/s521-001-8051-z
-
Rosipal, R.; Girolami, M.; Trejo, L. J.; Cichocki, A. (2001). Kernel PCA for feature extraction and de-noising in nonlinear regression. Neural Computing and Applications, 10, 231-243.
-
(2001)
Neural Computing and Applications
, vol.10
, pp. 231-243
-
-
Rosipal, R.1
Girolami, M.2
Trejo, L.J.3
Cichocki, A.4
-
34
-
-
78651536625
-
Prediction of dissolved oxygen in rivers using a Wang-Mendel method - Case study of Au Sable River
-
Shaghaghian, T. (2010). Prediction of dissolved oxygen in rivers using a Wang-Mendel method - case study of Au Sable River. World Academy of Science, Engineering and Technology, 38, 795-802.
-
(2010)
World Academy of Science, Engineering and Technology
, vol.38
, pp. 795-802
-
-
Shaghaghian, T.1
-
35
-
-
4544340267
-
Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-a case study
-
10.1016/j.watres.2004.06.011
-
Singh, K. P.; Malik, A.; Mohan, D.; Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-a case study. Water Research, 38, 3980-3992.
-
(2004)
Water Research
, vol.38
, pp. 3980-3992
-
-
Singh, K.P.1
Malik, A.2
Mohan, D.3
Sinha, S.4
-
36
-
-
33645515009
-
Chemometric analysis of hydro-chemical data of an alluvial river - A case study
-
10.1007/s11270-005-9010-0
-
Singh, K. P.; Malik, A.; Singh, V. K. (2006). Chemometric analysis of hydro-chemical data of an alluvial river - a case study. Water, Air, & Soil Pollution, 170, 383-404.
-
(2006)
Water, Air, & Soil Pollution
, vol.170
, pp. 383-404
-
-
Singh, K.P.1
Malik, A.2
Singh, V.K.3
-
37
-
-
60649118396
-
Artificial neural network modeling of the river water quality - A case study
-
10.1016/j.ecolmodel.2009.01.004
-
Singh, K. P.; Basant, A.; Malik, A.; Jain, G. (2009). Artificial neural network modeling of the river water quality - a case study. Ecological Modeling, 220, 888-895.
-
(2009)
Ecological Modeling
, vol.220
, pp. 888-895
-
-
Singh, K.P.1
Basant, A.2
Malik, A.3
Jain, G.4
-
38
-
-
71749090211
-
Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches - A case study
-
10.1016/j.aca.2009.11.001
-
Singh, K. P.; Basant, N.; Malik, A.; Jain, G. (2010). Modeling the performance of "up-flow anaerobic sludge blanket" reactor based wastewater treatment plant using linear and nonlinear approaches - a case study. Analytica Chimica Acta, 658, 1-11.
-
(2010)
Analytica Chimica Acta
, vol.658
, pp. 1-11
-
-
Singh, K.P.1
Basant, N.2
Malik, A.3
Jain, G.4
-
39
-
-
80052261350
-
Support vector machines in water quality management
-
10.1016/j.aca.2011.07.027
-
Singh, K. P.; Basant, N.; Gupta, S. (2011). Support vector machines in water quality management. Analytica Chimica Acta, 703, 152-162.
-
(2011)
Analytica Chimica Acta
, vol.703
, pp. 152-162
-
-
Singh, K.P.1
Basant, N.2
Gupta, S.3
-
40
-
-
84860697230
-
Linear and nonlinear modeling approaches for urban air quality prediction
-
10.1016/j.scitotenv.2012.03.076
-
Singh, K. P.; Gupta, S.; Kumar, A.; Shukla, S. P. (2012). Linear and nonlinear modeling approaches for urban air quality prediction. Science of the Total Environment, 426, 244-255.
-
(2012)
Science of the Total Environment
, vol.426
, pp. 244-255
-
-
Singh, K.P.1
Gupta, S.2
Kumar, A.3
Shukla, S.P.4
-
41
-
-
84883717859
-
Identifying pollution sources and predicting urban air quality using ensemble learning methods
-
10.1016/j.atmosenv.2013.08.023
-
Singh, K. P.; Gupta, S.; Rai, P. (2013). Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmospheric Environment, 80, 426-437.
-
(2013)
Atmospheric Environment
, vol.80
, pp. 426-437
-
-
Singh, K.P.1
Gupta, S.2
Rai, P.3
-
44
-
-
20444505293
-
Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization
-
10.1016/j.aca.2004.12.024
-
Ustun, B.; Melssen, W. J.; Oudenhuijzen, M.; Buydens, L. M. C. (2005). Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica Acta, 544, 292-305.
-
(2005)
Analytica Chimica Acta
, vol.544
, pp. 292-305
-
-
Ustun, B.1
Melssen, W.J.2
Oudenhuijzen, M.3
Buydens, L.M.C.4
-
46
-
-
0345688978
-
Determination of the spread parameter in the Gaussian kernel for classification and regression
-
10.1016/S0925-2312(02)00632-X
-
Wang, W.; Xu, Z.; Lu, W.; Zhang, X. (2003). Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55, 643-663.
-
(2003)
Neurocomputing
, vol.55
, pp. 643-663
-
-
Wang, W.1
Xu, Z.2
Lu, W.3
Zhang, X.4
-
47
-
-
34447649349
-
Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine
-
10.1016/j.talanta.2007.03.037
-
Wang, J.; Du, H.; Liu, H.; Yao, X.; Hu, Z.; Fan, B. (2007). Prediction of surface tension for common compounds based on novel methods using heuristic method and support vector machine. Talanta, 73, 147-156.
-
(2007)
Talanta
, vol.73
, pp. 147-156
-
-
Wang, J.1
Du, H.2
Liu, H.3
Yao, X.4
Hu, Z.5
Fan, B.6
-
48
-
-
84878347590
-
Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China
-
10.1007/s10661-012-2874-8
-
Wen, X.; Fang, J.; Diao, M.; Zhang, C. (2013). Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environmental Monitoring and Assessment, 185(5), 4361-4371.
-
(2013)
Environmental Monitoring and Assessment
, vol.185
, Issue.5
, pp. 4361-4371
-
-
Wen, X.1
Fang, J.2
Diao, M.3
Zhang, C.4
-
49
-
-
56149125295
-
On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant
-
10.1016/j.jhazmat.2008.04.004
-
Woo, S. H.; Jeon, C. O.; Yun, Y. S.; Choi, H.; Lee, C. S.; Lee, D. S. (2009). On-line estimation of key process variables based on kernel partial least squares in an industrial cokes wastewater treatment plant. Journal of Hazardous Materials, 161, 538-544.
-
(2009)
Journal of Hazardous Materials
, vol.161
, pp. 538-544
-
-
Woo, S.H.1
Jeon, C.O.2
Yun, Y.S.3
Choi, H.4
Lee, C.S.5
Lee, D.S.6
-
50
-
-
78149468553
-
Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS
-
10.1016/j.ces.2010.10.008
-
Zhang, Y.; Ma, C. (2011). Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS. Chemical Engineering Science, 66, 64-72.
-
(2011)
Chemical Engineering Science
, vol.66
, pp. 64-72
-
-
Zhang, Y.1
Ma, C.2
-
51
-
-
78149465043
-
Process data modeling using modified kernel partial least squares
-
10.1016/j.ces.2010.09.009
-
Zhang, Y.; Teng, Y. (2010). Process data modeling using modified kernel partial least squares. Chemical Engineering Science, 65, 6353-6361.
-
(2010)
Chemical Engineering Science
, vol.65
, pp. 6353-6361
-
-
Zhang, Y.1
Teng, Y.2
-
52
-
-
34247614938
-
2 with kernel ridge regression data analysis
-
10.1016/j.snb.2006.11.009
-
2 with kernel ridge regression data analysis. Sensors and Actuators B: Chemical, 123, 950-963.
-
(2007)
Sensors and Actuators B: Chemical
, vol.123
, pp. 950-963
-
-
Zhang, P.1
Lee, C.2
Verweij, H.3
Akbar, S.A.4
Hunter, G.5
Dutta, P.K.6
-
53
-
-
78751605036
-
Comparative studies of support vector regression between reproducing kernel and Gaussian kernel
-
Zhang, W.; Tang, S. Y.; Zhu, Y. F.; Wang, W. P. (2010). Comparative studies of support vector regression between reproducing kernel and Gaussian kernel. World Academy of Science, Engineering and Technology, 65, 933-941.
-
(2010)
World Academy of Science, Engineering and Technology
, vol.65
, pp. 933-941
-
-
Zhang, W.1
Tang, S.Y.2
Zhu, Y.F.3
Wang, W.P.4
|