메뉴 건너뛰기




Volumn 104, Issue , 2013, Pages 105-114

Automatic sleep stage recurrent neural classifier using energy features of EEG signals

Author keywords

EEG signals; Energy features; Recurrent neural classifiers; Sleep stage analysis

Indexed keywords

CLASSIFICATION PERFORMANCE; CLASSIFICATION RATES; EEG SIGNALS; ENERGY FEATURE; NEURAL CLASSIFIERS; PHYSIOBANK; PROBABILISTIC NEURAL NETWORKS; SLEEP RECORDINGS; SLEEP STAGE;

EID: 84873736761     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.11.003     Document Type: Article
Times cited : (279)

References (32)
  • 1
    • 0035197525 scopus 로고    scopus 로고
    • Computer-assisted sleep staging,
    • Agarwal R., Gotman J. Computer-assisted sleep staging,. IEEE Trans. Biomed. Eng. 2001, 48(12):1412-1423.
    • (2001) IEEE Trans. Biomed. Eng. , vol.48 , Issue.12 , pp. 1412-1423
    • Agarwal, R.1    Gotman, J.2
  • 2
    • 79961169583 scopus 로고    scopus 로고
    • Singular spectrum analysis of sleep EEG in insomnia
    • Aydin S., Saraolu H.M., Kara S. Singular spectrum analysis of sleep EEG in insomnia. J. Med. Syst. 2011, 35(4):457-461.
    • (2011) J. Med. Syst. , vol.35 , Issue.4 , pp. 457-461
    • Aydin, S.1    Saraolu, H.M.2    Kara, S.3
  • 4
    • 84937873357 scopus 로고    scopus 로고
    • An automatic sleep-stage classifier using electroencephalographic signals
    • Correa A.G., Laciar E., Patiño H.D., Valentinuzzi M.E. An automatic sleep-stage classifier using electroencephalographic signals. Int. J. Med. Sci. 2008, 1(1):13-21.
    • (2008) Int. J. Med. Sci. , vol.1 , Issue.1 , pp. 13-21
    • Correa, A.G.1    Laciar, E.2    Patiño, H.D.3    Valentinuzzi, M.E.4
  • 5
    • 79956334572 scopus 로고    scopus 로고
    • Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging
    • Charbonnier S., Zoubek L., Lesecq S., Chapotot F. Self-evaluated automatic classifier as a decision-support tool for sleep/wake staging. Comput. Biol. Med. 2011, 41(6):380-389.
    • (2011) Comput. Biol. Med. , vol.41 , Issue.6 , pp. 380-389
    • Charbonnier, S.1    Zoubek, L.2    Lesecq, S.3    Chapotot, F.4
  • 6
    • 0027154319 scopus 로고
    • Approximation of dynamical systems by continuous time recurrent neural networks,
    • Funahashi K.I., Nakamura Y. Approximation of dynamical systems by continuous time recurrent neural networks,. Neural Networks 1993, 6(6):801-806.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 801-806
    • Funahashi, K.I.1    Nakamura, Y.2
  • 7
    • 0032203999 scopus 로고    scopus 로고
    • A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification
    • Feldkamp L.A., Puskorius G.V. A signal processing framework based on dynamic neural networks with application to problems in adaptation, filtering, and classification. Proc. IEEE 1998, 86(11):2259-2277.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2259-2277
    • Feldkamp, L.A.1    Puskorius, G.V.2
  • 8
    • 16244397714 scopus 로고    scopus 로고
    • A reliable probabilistic sleep stager based on a single EEG signal,
    • Flexer A., Gruber G., Dorffner G. A reliable probabilistic sleep stager based on a single EEG signal,. Artif. Intell. Med. 2005, 33(3):199-207.
    • (2005) Artif. Intell. Med. , vol.33 , Issue.3 , pp. 199-207
    • Flexer, A.1    Gruber, G.2    Dorffner, G.3
  • 9
    • 79951894058 scopus 로고    scopus 로고
    • Automatic sleep stage scoring with wavelet packets based on single EEG recording
    • Fraiwan L.A., Khaswaneh N.Y., Lweesy K.Y. Automatic sleep stage scoring with wavelet packets based on single EEG recording. World Acad. Sci. Eng. Technol. 2009, 54:485-488.
    • (2009) World Acad. Sci. Eng. Technol. , vol.54 , pp. 485-488
    • Fraiwan, L.A.1    Khaswaneh, N.Y.2    Lweesy, K.Y.3
  • 10
    • 0015583528 scopus 로고
    • Principles of automatic analysis of sleep records with a hybrid system,
    • Gaillard J.M., Tissot R. Principles of automatic analysis of sleep records with a hybrid system,. Comput. Biomed. Res. 1973, 6:1-13.
    • (1973) Comput. Biomed. Res. , vol.6 , pp. 1-13
    • Gaillard, J.M.1    Tissot, R.2
  • 11
    • 24144470790 scopus 로고    scopus 로고
    • Recurrent neural networks employing Lyapunov exponents for EEG signals classification
    • Güler N.F., Übeyli E.D., Güler. Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 2005, 29(3):506-514.
    • (2005) Expert Syst. Appl. , vol.29 , Issue.3 , pp. 506-514
    • Güler, N.F.1    Übeyli, E.D.2    Güler3
  • 12
    • 61549087865 scopus 로고    scopus 로고
    • Automatic detection of sleep stages using EEG, in: Proceedings of the 23rd Annual International Conference of the IEEE
    • P.V. Hese, W. Philips, J.D. Koninck, R.V. de Walle, I. Lemahieu, Automatic detection of sleep stages using EEG, in: Proceedings of the 23rd Annual International Conference of the IEEE, vol. 2, 2001, pp. 1944-1947.
    • (2001) , vol.2 , pp. 1944-1947
    • Hese, P.V.1    Philips, W.2    Koninck, J.D.3    de Walle, R.V.4    Lemahieu, I.5
  • 13
    • 0036786692 scopus 로고    scopus 로고
    • Automatic sleep stage scoring based on waveform recognition method and decision-tree learning
    • Hanaoka M., Kobayashi M., Yamazaki H. Automatic sleep stage scoring based on waveform recognition method and decision-tree learning. Syst. Comput. Jpn. 2002, 33(11):1-13.
    • (2002) Syst. Comput. Jpn. , vol.33 , Issue.11 , pp. 1-13
    • Hanaoka, M.1    Kobayashi, M.2    Yamazaki, H.3
  • 14
    • 0037239496 scopus 로고    scopus 로고
    • Recurrent neural networks for time series classification
    • Hüsken M., Stagge P. Recurrent neural networks for time series classification. Neurocomputing 2003, 50:223-235.
    • (2003) Neurocomputing , vol.50 , pp. 223-235
    • Hüsken, M.1    Stagge, P.2
  • 15
    • 0029342140 scopus 로고
    • Approximation of discrete-time state-space trajectories using dynamic recurrent neural networks
    • Jin L., Nikiforuk P.N., Gupta M.M. Approximation of discrete-time state-space trajectories using dynamic recurrent neural networks. IEEE Trans. Autom. Control 1995, 40(7):1266-1270.
    • (1995) IEEE Trans. Autom. Control , vol.40 , Issue.7 , pp. 1266-1270
    • Jin, L.1    Nikiforuk, P.N.2    Gupta, M.M.3
  • 16
    • 77954758023 scopus 로고    scopus 로고
    • Genetic fuzzy classifier for sleep stage identification
    • Jo H.G., Park J.Y., Lee C.K., An S.K., Yoo S.K. Genetic fuzzy classifier for sleep stage identification. Comput. Biol. Med. 2010, 40(7):629-634.
    • (2010) Comput. Biol. Med. , vol.40 , Issue.7 , pp. 629-634
    • Jo, H.G.1    Park, J.Y.2    Lee, C.K.3    An, S.K.4    Yoo, S.K.5
  • 17
    • 84873715387 scopus 로고    scopus 로고
    • The Sleep-EDF Database
    • B. Kemp, The Sleep-EDF Database, , 2006. http://www.physionet.org/physiobank/database/sleep-edf/.
    • (2006)
    • Kemp, B.1
  • 18
    • 0034331114 scopus 로고    scopus 로고
    • Interobserver agreement among sleep scorers from different centers in a large dataset
    • Norman R.G., Pal I., Stewart C., Walsleben J.A., Rapoport D.M. Interobserver agreement among sleep scorers from different centers in a large dataset. Sleep 2000, 23(7):901-908.
    • (2000) Sleep , vol.23 , Issue.7 , pp. 901-908
    • Norman, R.G.1    Pal, I.2    Stewart, C.3    Walsleben, J.A.4    Rapoport, D.M.5
  • 19
    • 84873715892 scopus 로고    scopus 로고
    • Sleep Stage Classification Using Wavelet Transform and Neural Networks, International Computer Science Institute
    • E. Oropesa, H.L. Cycon, M. Jobert, Sleep Stage Classification Using Wavelet Transform and Neural Networks, International Computer Science Institute, 1999.
    • (1999)
    • Oropesa, E.1    Cycon, H.L.2    Jobert, M.3
  • 20
    • 0024661942 scopus 로고
    • Sleep staging automaton based on the theory of evidence
    • Principe J.C., Gala S.K., Chang T.G. Sleep staging automaton based on the theory of evidence. IEEE Trans. Biomed. Eng. 1989, 36(5):503-509.
    • (1989) IEEE Trans. Biomed. Eng. , vol.36 , Issue.5 , pp. 503-509
    • Principe, J.C.1    Gala, S.K.2    Chang, T.G.3
  • 21
    • 0034923224 scopus 로고    scopus 로고
    • Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG
    • Petrosian A.A., Prokhorov D.V., Lajara-Nanson W., Schiffer R.B. Recurrent neural network-based approach for early recognition of Alzheimer's disease in EEG. Clin. Neurophysiol. 2001, 112(8):1378-1387.
    • (2001) Clin. Neurophysiol. , vol.112 , Issue.8 , pp. 1378-1387
    • Petrosian, A.A.1    Prokhorov, D.V.2    Lajara-Nanson, W.3    Schiffer, R.B.4
  • 23
    • 84873703543 scopus 로고
    • A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects, UCLA, Brain Research Institute/Brain Information service, Los Angeles, CA
    • A. Rechtschaffen, A. Kales, A Manual of Standardized Terminology, Techniques, and Scoring System for Sleep Stages of Human Subjects, UCLA, Brain Research Institute/Brain Information service, Los Angeles, CA, 1968.
    • (1968)
    • Rechtschaffen, A.1    Kales, A.2
  • 26
    • 0030069856 scopus 로고    scopus 로고
    • Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients,
    • Schaltenbrand N., Lengelle R., Toussaint M., Luthringer R., Carelli G., Jacqmin A., Lainey E., Muzet A., Macher J.P. Sleep stage scoring using the neural network model: comparison between visual and automatic analysis in normal subjects and patients,. Sleep 1996, 19(1):26-35.
    • (1996) Sleep , vol.19 , Issue.1 , pp. 26-35
    • Schaltenbrand, N.1    Lengelle, R.2    Toussaint, M.3    Luthringer, R.4    Carelli, G.5    Jacqmin, A.6    Lainey, E.7    Muzet, A.8    Macher, J.P.9
  • 27
    • 34547898032 scopus 로고    scopus 로고
    • Recurrent neural networks are universal approximators
    • Schäfer A.M., Zimmermann H.G. Recurrent neural networks are universal approximators. Int. J. Neural Syst. 2007, 17(4):253-263.
    • (2007) Int. J. Neural Syst. , vol.17 , Issue.4 , pp. 253-263
    • Schäfer, A.M.1    Zimmermann, H.G.2
  • 28
    • 49949152648 scopus 로고    scopus 로고
    • Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states
    • Sinha R.K. Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states. J. Med. Syst. 2008, 32(4):291-299.
    • (2008) J. Med. Syst. , vol.32 , Issue.4 , pp. 291-299
    • Sinha, R.K.1
  • 29
    • 51049100857 scopus 로고    scopus 로고
    • EEG power spectrum and neural network based sleep-hypnogram analysis for a model of heat stress
    • , 99.
    • Sinha R.K. EEG power spectrum and neural network based sleep-hypnogram analysis for a model of heat stress. J. Clin. Monitor. Comput. 2008, 22(4):261-268. , 99.
    • (2008) J. Clin. Monitor. Comput. , vol.22 , Issue.4 , pp. 261-268
    • Sinha, R.K.1
  • 30
    • 77956063187 scopus 로고    scopus 로고
    • Estimation of sleep stage by an artificial neyral network employing EEG, EMG, and EOG
    • Tagluk M.E., Sezgin N., Akin M. Estimation of sleep stage by an artificial neyral network employing EEG, EMG, and EOG. J. Med. Syst. 2010, 34(4):717-725.
    • (2010) J. Med. Syst. , vol.34 , Issue.4 , pp. 717-725
    • Tagluk, M.E.1    Sezgin, N.2    Akin, M.3
  • 31
    • 0036902547 scopus 로고    scopus 로고
    • Self-adaptive neuro-fuzzy inference systems for classification applications,
    • Wang J.S., Lee C.S.G. Self-adaptive neuro-fuzzy inference systems for classification applications,. IEEE Trans. Fuzzy Syst. 2002, 10(6):790-802.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.6 , pp. 790-802
    • Wang, J.S.1    Lee, C.S.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.