메뉴 건너뛰기




Volumn 37, Issue 2, 2013, Pages

A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being

Author keywords

Cardiotocogram (CTG); Diagnosis; Fetal Heart Rate (FHR); Genetic Algorithm (GA); Support Vector Machines (SVM)

Indexed keywords

ARTICLE; CARDIOTOCOGRAPHY; DECISION SUPPORT SYSTEM; FETAL WELL BEING; FETUS HEART RATE; GENETIC ALGORITHM; HUMAN; MACHINE LEARNING; RECORDING; SUPPORT VECTOR MACHINE; UTERUS CONTRACTION; ALGORITHM; CROSSING OVER; EVALUATION STUDY; EXPERT SYSTEM; FEMALE; FETUS; PREGNANCY; PROCEDURES;

EID: 84872108571     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-012-9913-4     Document Type: Article
Times cited : (101)

References (32)
  • 2
    • 0035897930 scopus 로고    scopus 로고
    • Electronic fetal monitoring is not necessary for low risk labours
    • 10.1136/bmj.322.7300.1436
    • Goddard, R., Electronic fetal monitoring is not necessary for low risk labours. Brit. Med. J. 322:1436-1437, 2001.
    • (2001) Brit. Med. J. , vol.322 , pp. 1436-1437
    • Goddard, R.1
  • 3
    • 0000634150 scopus 로고
    • Guidelines for the use of fetal monitoring
    • 10.1016/0020-7292(87)90012-9
    • Rooth, G., Huch, A., and Huch, R., Guidelines for the use of fetal monitoring. Int. J. Gynaecol. Obstet. 25:159-167, 1987.
    • (1987) Int. J. Gynaecol. Obstet. , vol.25 , pp. 159-167
    • Rooth, G.1    Huch, A.2    Huch, R.3
  • 5
    • 33746353966 scopus 로고    scopus 로고
    • Intrapartum cardiotocography - The dilemma of interpretational variation
    • 10.1515/JPM.2006.057
    • Palomaki, O., Luukkaala, T., Luoto, R., and Tuimala, R., Intrapartum cardiotocography - the dilemma of interpretational variation. J Perinat Med 34:298-302, 2006.
    • (2006) J Perinat Med , vol.34 , pp. 298-302
    • Palomaki, O.1    Luukkaala, T.2    Luoto, R.3    Tuimala, R.4
  • 6
    • 0022536591 scopus 로고
    • Classification of fetal and neonatal heart rate patterns in relation to behavioural states
    • 10.1016/0028-2243(86)90007-9
    • Jongsma, H. W., and Nijhuis, J. G., Classification of fetal and neonatal heart rate patterns in relation to behavioural states. Eur. J. Obstet. Gynecol. Reprod. Biol. 21:293-299, 1986.
    • (1986) Eur. J. Obstet. Gynecol. Reprod. Biol. , vol.21 , pp. 293-299
    • Jongsma, H.W.1    Nijhuis, J.G.2
  • 8
    • 0034474737 scopus 로고    scopus 로고
    • Classification of fetal pathologies through fuzzy inference systems based on a multiparametric analysis of fetal heart rate
    • Signorini, M. G., de-Angelis, A., Magenes, G., Sassi, R., Arduini, D., and Cerutti, S., Classification of fetal pathologies through fuzzy inference systems based on a multiparametric analysis of fetal heart rate. Comput. Cardiol. 27:435-438, 2000.
    • (2000) Comput. Cardiol. , vol.27 , pp. 435-438
    • Signorini, M.G.1    De-Angelis, A.2    Magenes, G.3    Sassi, R.4    Arduini, D.5    Cerutti, S.6
  • 9
    • 33646338651 scopus 로고    scopus 로고
    • Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines
    • 10.1109/TBME.2006.872814
    • Georgoulas, G., and Stylios, C. D., Predicting the risk of metabolic acidosis for newborns based on fetal heart rate signal classification using support vector machines. IEEE Trans. Biomed. Eng. 53:875-884, 2006.
    • (2006) IEEE Trans. Biomed. Eng. , vol.53 , pp. 875-884
    • Georgoulas, G.1    Stylios, C.D.2
  • 11
    • 33746227691 scopus 로고    scopus 로고
    • Feature extraction and classification of fetal heart rate using wavelet analysis and support vector machine
    • 10.1142/S0218213006002746
    • Georgoulas, G., Stylios, C. D., and Groumpos, P. P., Feature extraction and classification of fetal heart rate using wavelet analysis and support vector machine. Int. J. Artif. Intell. Tools 15:411-432, 2005.
    • (2005) Int. J. Artif. Intell. Tools , vol.15 , pp. 411-432
    • Georgoulas, G.1    Stylios, C.D.2    Groumpos, P.P.3
  • 12
    • 84855957460 scopus 로고    scopus 로고
    • Passive fetal monitoring by adaptive wavelet denoising method
    • 10.1016/j.compbiomed.2011.11.005
    • Vaisman, S., Salem, S. Y., Holcberg, G., and Geva, A. B., Passive fetal monitoring by adaptive wavelet denoising method. Comput. Biol. Med. 42:171-179, 2012.
    • (2012) Comput. Biol. Med. , vol.42 , pp. 171-179
    • Vaisman, S.1    Salem, S.Y.2    Holcberg, G.3    Geva, A.B.4
  • 13
    • 33845450687 scopus 로고    scopus 로고
    • On the creation of a new diagnostic model for fetal well-being on the base of wavelet analysis of cardiotocograms
    • 10.1007/s10916-006-9037-9
    • Cattani, C., Doubrovina, O., Rogosin, S., Voskresensky, S. L., and Zelianko, E., On the creation of a new diagnostic model for fetal well-being on the base of wavelet analysis of cardiotocograms. J. Med. Syst. 30:489-494, 2006.
    • (2006) J. Med. Syst. , vol.30 , pp. 489-494
    • Cattani, C.1    Doubrovina, O.2    Rogosin, S.3    Voskresensky, S.L.4    Zelianko, E.5
  • 15
    • 0035430143 scopus 로고    scopus 로고
    • Categorization of fetal heart rate patterns using neural networks
    • 10.1023/A:1010779205000
    • Liszka-Hackzell, J. J., Categorization of fetal heart rate patterns using neural networks. J. Med. Syst. 25:269-276, 2001.
    • (2001) J. Med. Syst. , vol.25 , pp. 269-276
    • Liszka-Hackzell, J.J.1
  • 16
    • 38048999619 scopus 로고    scopus 로고
    • Multiparametric analysis of fetal heart rate: Comparison of neural and statistical classifiers
    • Pula, Croatia
    • Magenes, G., Signorini, M.G., Sassi, R., Arduini, D., Multiparametric analysis of fetal heart rate: comparison of neural and statistical classifiers. Proceedings of Medicon 2001, Pula, Croatia, 360-363, (2001).
    • (2001) Proceedings of Medicon 2001 , pp. 360-363
    • Magenes, G.1    Signorini, M.G.2    Sassi, R.3    Arduini, D.4
  • 17
    • 84885925293 scopus 로고    scopus 로고
    • Prediction of fetal State from the cardiotocogram recordings using adaptive neuro-fuzzy inference systems
    • doi: 10.1007/s00521-012-1110-3
    • Ocak, H., and Ertunc, H. M., Prediction of fetal State from the cardiotocogram recordings using adaptive neuro-fuzzy inference systems. Neural Comput. Appl., 2012. doi: 10.1007/s00521-012-1110-3.
    • (2012) Neural Comput. Appl.
    • Ocak, H.1    Ertunc, H.M.2
  • 18
    • 33845415542 scopus 로고    scopus 로고
    • Cancer gene search with data-mining and genetic algorithms
    • 10.1016/j.compbiomed.2006.01.007
    • Shah, S., and Kusiak, A., Cancer gene search with data-mining and genetic algorithms. Comput. Biol. Med. 37:251-261, 2007.
    • (2007) Comput. Biol. Med. , vol.37 , pp. 251-261
    • Shah, S.1    Kusiak, A.2
  • 19
    • 33845653930 scopus 로고    scopus 로고
    • A fusion model of HMM, ANN and GA for stock market forecasting
    • 10.1016/j.eswa.2006.04.007
    • Hassan, R., Nath, B., and Kirley, M., A fusion model of HMM, ANN and GA for stock market forecasting. Expert Syst. Appl. 33:171-180, 2007.
    • (2007) Expert Syst. Appl. , vol.33 , pp. 171-180
    • Hassan, R.1    Nath, B.2    Kirley, M.3
  • 20
    • 84864146405 scopus 로고    scopus 로고
    • Bispectral analysis and genetic algorithm for congestive heart failure recognition based on heart rate variability
    • 10.1016/j.compbiomed.2012.06.005
    • Yu, S. N., and Lee, M. Y., Bispectral analysis and genetic algorithm for congestive heart failure recognition based on heart rate variability. Comput. Biol. Med. 42:816-825, 2012.
    • (2012) Comput. Biol. Med. , vol.42 , pp. 816-825
    • Yu, S.N.1    Lee, M.Y.2
  • 21
    • 79959686891 scopus 로고    scopus 로고
    • Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm
    • 10.1007/s10916-009-9369-3
    • Elveren, E., and Yumusak, N., Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm. J. Med. Syst. 35:329-332, 2011.
    • (2011) J. Med. Syst. , vol.35 , pp. 329-332
    • Elveren, E.1    Yumusak, N.2
  • 22
    • 79961172206 scopus 로고    scopus 로고
    • Classifying epilepsy diseases using artificial neural networks and genetic algorithm
    • 10.1007/s10916-009-9385-3
    • Kocer, S., and Canal, M. R., Classifying epilepsy diseases using artificial neural networks and genetic algorithm. J. Med. Syst. 35:489-498, 2011.
    • (2011) J. Med. Syst. , vol.35 , pp. 489-498
    • Kocer, S.1    Canal, M.R.2
  • 23
    • 34249753618 scopus 로고
    • Support vector networks
    • Vapnik, V., and Cortes, C., Support vector networks. Mach. Learn. 20:273-297, 1989.
    • (1989) Mach. Learn. , vol.20 , pp. 273-297
    • Vapnik, V.1    Cortes, C.2
  • 24
    • 48749124392 scopus 로고    scopus 로고
    • Multiclass support vector machines for diagnosis of erythemato-squamous diseases
    • 10.1016/j.eswa.2007.08.067
    • Ubeyli, E. D., Multiclass support vector machines for diagnosis of erythemato-squamous diseases. Expert Syst. Appl. 35:1733-1740, 2008.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1733-1740
    • Ubeyli, E.D.1
  • 25
    • 77957580238 scopus 로고    scopus 로고
    • Diagnosis of airway obstruction or restrictive spirometric patterns by multiclass support vector machines
    • 10.1007/s10916-009-9312-7
    • Sahin, D., Ubeyli, E. D., Ilbay, G., Sahin, M., and Yasar, A. B., Diagnosis of airway obstruction or restrictive spirometric patterns by multiclass support vector machines. J. Med. Syst. 34:967-973, 2010.
    • (2010) J. Med. Syst. , vol.34 , pp. 967-973
    • Sahin, D.1    Ubeyli, E.D.2    Ilbay, G.3    Sahin, M.4    Yasar, A.B.5
  • 26
    • 84873050201 scopus 로고    scopus 로고
    • Decision support algorithm for diagnosis of ADHD using electroencephalograms
    • 10.1007/s10916-011-9742-x
    • Abibullaev, B., and An, J., Decision support algorithm for diagnosis of ADHD using electroencephalograms. J. Med. Syst. 36:2675-2688, 2012.
    • (2012) J. Med. Syst. , vol.36 , pp. 2675-2688
    • Abibullaev, B.1    An, J.2
  • 27
    • 84866075139 scopus 로고    scopus 로고
    • Support vector machine based diagnostic system for breast cancer using swarm intelligence
    • 10.1007/s10916-011-9723-0
    • Chen, H. L., Yang, B., Wang, G., Wang, S. J., Liu, J., and Liu, D. Y., Support vector machine based diagnostic system for breast cancer using swarm intelligence. J. Med. Syst. 36:2505-2519, 2012.
    • (2012) J. Med. Syst. , vol.36 , pp. 2505-2519
    • Chen, H.L.1    Yang, B.2    Wang, G.3    Wang, S.J.4    Liu, J.5    Liu, D.Y.6
  • 31
    • 78649934709 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • Frank, A., Asuncion, A., UCI Machine Learning Repository. [ http://archive.ics.uci.edu/ml ]. Irvine, CA: University of California, School of Information and Computer Science, 2000.
    • (2000) UCI Machine Learning Repository
    • Frank, A.1    Asuncion, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.