메뉴 건너뛰기




Volumn 32, Issue 4, 2008, Pages 291-299

Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states

Author keywords

ANN; Power spectrum; Sleep wake classification; Wavelet coefficients

Indexed keywords

ADULT; ARTICLE; ARTIFICIAL NEURAL NETWORK; COMPUTER ANALYSIS; CONSCIOUSNESS; ELECTROENCEPHALOGRAM; ELECTROMYOGRAM; ELECTROOCULOGRAM; HUMAN; MALE; NORMAL HUMAN; REM SLEEP; SIGNAL DETECTION; SLEEP SPINDLE; SLEEP STAGE; SLEEP WAKING CYCLE; SPIKE WAVE; WAKEFULNESS;

EID: 49949152648     PISSN: 01485598     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10916-008-9134-z     Document Type: Article
Times cited : (68)

References (46)
  • 1
    • 0025910060 scopus 로고
    • The function of sleep: Further analysis
    • Cai, Z., The function of sleep: further analysis. Physiol. Behav. 50:53-60, 1991.
    • (1991) Physiol. Behav , vol.50 , pp. 53-60
    • Cai, Z.1
  • 2
    • 0029943829 scopus 로고    scopus 로고
    • Chronic exercise alters EEG power spectra in an animal model of depression
    • Sarbadhikari, S. N., Dey, S., and Ray, A. K., Chronic exercise alters EEG power spectra in an animal model of depression. Ind. J. Physiol. Pharmacol. 40:47-57, 1996.
    • (1996) Ind. J. Physiol. Pharmacol , vol.40 , pp. 47-57
    • Sarbadhikari, S.N.1    Dey, S.2    Ray, A.K.3
  • 3
    • 0035259288 scopus 로고    scopus 로고
    • An artificial neural network approach to diagnosing epilepsy using lateralized bursts of theta EEGs
    • Walczak, S., and Nowack, W. J., An artificial neural network approach to diagnosing epilepsy using lateralized bursts of theta EEGs. J. Med. Syst. 25:9-20, 2001.
    • (2001) J. Med. Syst , vol.25 , pp. 9-20
    • Walczak, S.1    Nowack, W.J.2
  • 4
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • Srinivasan, V., Eswaran, C., and Sriraam, N., Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29:647-660, 2005.
    • (2005) J. Med. Syst , vol.29 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 5
    • 34548079028 scopus 로고    scopus 로고
    • Neural network-based diagnosing for optic nerve disease from visual-evoked potential
    • Kara, S., and Güven, A., Neural network-based diagnosing for optic nerve disease from visual-evoked potential. J. Med. Syst. 31:391-396, 2007.
    • (2007) J. Med. Syst , vol.31 , pp. 391-396
    • Kara, S.1    Güven, A.2
  • 7
    • 0024347752 scopus 로고
    • Comparison between the results of an automatic and visual scoring of sleep EEG records
    • Ferri, R., Ferri, P., Colongnola, R. M., Petrella, M. A., Musumeei, S. A., and Bergonzi, P., Comparison between the results of an automatic and visual scoring of sleep EEG records. Sleep 12:354-362, 1989.
    • (1989) Sleep , vol.12 , pp. 354-362
    • Ferri, R.1    Ferri, P.2    Colongnola, R.M.3    Petrella, M.A.4    Musumeei, S.A.5    Bergonzi, P.6
  • 8
    • 0024474677 scopus 로고
    • Knowledge-based approach to sleep EEG analysis-a feasibility study
    • Jansen, B., and Dawant, B., Knowledge-based approach to sleep EEG analysis-a feasibility study. IEEE Trans. BME 36:510-518, 1989.
    • (1989) IEEE Trans. BME , vol.36 , pp. 510-518
    • Jansen, B.1    Dawant, B.2
  • 9
    • 0024941209 scopus 로고
    • Information processing models for automatic sleep scoring
    • IEEE Engg. in Med. & Biol. Soc., 9th-12th Nov. 1989, Seattle, Washington, USA, Section 6:
    • Principe, J. C., Chang, T. G., Gala, S. K., and Tome, A. P., Information processing models for automatic sleep scoring. Proc. 11th Ann. Int. Conf., IEEE Engg. in Med. & Biol. Soc., 9th-12th Nov. 1989, Seattle, Washington, USA, Section 6:1804-1805, 1989.
    • (1989) Proc. 11th Ann. Int. Conf. , pp. 1804-1805
    • Principe, J.C.1    Chang, T.G.2    Gala, S.K.3    Tome, A.P.4
  • 10
    • 0024147331 scopus 로고
    • A microcomputer based system for automated EEG collection and scoring of behavioural state in cats
    • Mamelak, A., Quattrochi, J. J., and Hobson, J. A., A microcomputer based system for automated EEG collection and scoring of behavioural state in cats. Brain. Res. Bull. 21:843-849, 1988.
    • (1988) Brain. Res. Bull , vol.21 , pp. 843-849
    • Mamelak, A.1    Quattrochi, J.J.2    Hobson, J.A.3
  • 12
    • 0026651091 scopus 로고
    • Sleep classification in infants based on artificial neural networks
    • Pfurtscheller, G., Flotzinger, D., and Matuschik, K., Sleep classification in infants based on artificial neural networks. Biomed. Tech. Berl. 37:122-130, 1992.
    • (1992) Biomed. Tech. Berl , vol.37 , pp. 122-130
    • Pfurtscheller, G.1    Flotzinger, D.2    Matuschik, K.3
  • 13
    • 0027514082 scopus 로고
    • Neural network model: Application to automatic analysis of human sleep
    • Schaltenbrand, N., Lengelle, R., and Macher, J. P., Neural network model: application to automatic analysis of human sleep. Comput. Biomed. Res. 26:157-171, 1993.
    • (1993) Comput. Biomed. Res , vol.26 , pp. 157-171
    • Schaltenbrand, N.1    Lengelle, R.2    MacHer, J.P.3
  • 14
    • 0030069856 scopus 로고    scopus 로고
    • Sleep stage scoring using neural network model: Comparison between visual and automatic analysis in normal subjects and patients
    • Schaltenbrand, N., Lengelle, R., Toussaint, M., Lutheringer, R., Carelli, G., Jacqmin, A., Lainey, E., Muzet, A., and Macher, J. P., Sleep stage scoring using neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep 19:25-35, 1996.
    • (1996) Sleep , vol.19 , pp. 25-35
    • Schaltenbrand, N.1    Lengelle, R.2    Toussaint, M.3    Lutheringer, R.4    Carelli, G.5    Jacqmin, A.6    Lainey, E.7    Muzet, A.8    MacHer, J.P.9
  • 15
    • 0029977190 scopus 로고    scopus 로고
    • Recognition of rapid-eye-movement sleep from single channel EEG data by artificial neural network: A study in depressive patients with and without amitriptyline treatment
    • Grozinger, M., and Roschke, J., Recognition of rapid-eye-movement sleep from single channel EEG data by artificial neural network: a study in depressive patients with and without amitriptyline treatment. Neuropsychobiology 33:155-159, 1996.
    • (1996) Neuropsychobiology , vol.33 , pp. 155-159
    • Grozinger, M.1    Roschke, J.2
  • 16
    • 0032548892 scopus 로고    scopus 로고
    • Review of neural network applications in sleep research
    • Robert, C., Guilpin, C., and Limoge, A., Review of neural network applications in sleep research. J. Neurosci. Meth. 79:187-193, 1998.
    • (1998) J. Neurosci. Meth , vol.79 , pp. 187-193
    • Robert, C.1    Guilpin, C.2    Limoge, A.3
  • 17
    • 0034095166 scopus 로고    scopus 로고
    • Detection of characteristic waves of sleep EEG by neural network analysis
    • Shimada, T., and Shiina, T., Detection of characteristic waves of sleep EEG by neural network analysis. IEEE Trans. BME 47:369-379, 2000.
    • (2000) IEEE Trans. BME , vol.47 , pp. 369-379
    • Shimada, T.1    Shiina, T.2
  • 18
    • 0035197525 scopus 로고    scopus 로고
    • Computer-assisted sleep staging
    • Agarwal, R., and Gotman, J., Computer-assisted sleep staging. IEEE Trans. BME 48:1412-1423, 2001.
    • (2001) IEEE Trans. BME , vol.48 , pp. 1412-1423
    • Agarwal, R.1    Gotman, J.2
  • 19
    • 0032077359 scopus 로고    scopus 로고
    • Automated neural network detection of wavelet preprocessed electrocardiogram late potentials
    • Rakotomamonjy, A., Migeon, B., and Marche, P., Automated neural network detection of wavelet preprocessed electrocardiogram late potentials. Med. Biol. Eng. Comput. 36:346-350, 1998.
    • (1998) Med. Biol. Eng. Comput , vol.36 , pp. 346-350
    • Rakotomamonjy, A.1    Migeon, B.2    Marche, P.3
  • 20
    • 23744458827 scopus 로고    scopus 로고
    • Wavelet transforms and the ECG: A review
    • Addison, P. S., Wavelet transforms and the ECG: a review. Physiol. Meas. 26:R155-199, 2005.
    • (2005) Physiol. Meas , vol.26 , pp. 155-199
    • Addison, P.S.1
  • 21
    • 34250850214 scopus 로고    scopus 로고
    • Backpropagation artificial neural network classifier to detect changes in heart sound due to mitral valve regurgitation
    • Sinha, R. K., Aggarwal, Y., and Das, B. N., Backpropagation artificial neural network classifier to detect changes in heart sound due to mitral valve regurgitation. J. Med. Sys. 31:205-209, 2007.
    • (2007) J. Med. Sys , vol.31 , pp. 205-209
    • Sinha, R.K.1    Aggarwal, Y.2    Das, B.N.3
  • 22
    • 33645296307 scopus 로고    scopus 로고
    • Quantifying cortical activity during general anesthesia using wavelet analysis
    • Zikov, T., Bibian, S., Dumont, G. A., Huzmezan, M., and Ries, C. R., Quantifying cortical activity during general anesthesia using wavelet analysis. IEEE Trans. BME 53:617-632, 2006.
    • (2006) IEEE Trans. BME , vol.53 , pp. 617-632
    • Zikov, T.1    Bibian, S.2    Dumont, G.A.3    Huzmezan, M.4    Ries, C.R.5
  • 23
    • 37349024109 scopus 로고    scopus 로고
    • Wavelet/mixture of experts network structure for EEG signal classification
    • Übeli, E. D., Wavelet/mixture of experts network structure for EEG signal classification. Expert Syst. Appl. 34:1954-1962, 2008.
    • (2008) Expert Syst. Appl , vol.34 , pp. 1954-1962
    • Übeli, E.D.1
  • 24
    • 17444384508 scopus 로고    scopus 로고
    • Automatic recognition of vigilance state by using a wavelet based artificial neural network
    • Subasi, A., Kiymik, M. K., and Akin, M., Automatic recognition of vigilance state by using a wavelet based artificial neural network. Neural. Comput. Applic. 14:45-55, 2005.
    • (2005) Neural. Comput. Applic , vol.14 , pp. 45-55
    • Subasi, A.1    Kiymik, M.K.2    Akin, M.3
  • 26
    • 2942744301 scopus 로고    scopus 로고
    • Electroencephalogram disturbances in different sleep-wake states following exposure to high environmental heat
    • Sinha, R. K., Electroencephalogram disturbances in different sleep-wake states following exposure to high environmental heat. Med. Biol. Eng. Comput. 42:282-287, 2004.
    • (2004) Med. Biol. Eng. Comput , vol.42 , pp. 282-287
    • Sinha, R.K.1
  • 27
    • 49949152098 scopus 로고
    • Periodicity of sleep spindle appearance in normal adults
    • BIS/BRI, UCLA Los Angeles
    • Azumi, K., Shirakawa, S., and Takahashi, S., Periodicity of sleep spindle appearance in normal adultsIn: Chase, M. H., Mitler, M. M., Walter, P. L., (Ed.), Sleep ResearchVol. 4. BIS/BRI, UCLA, Los Angeles, p. 262, 1975.
    • (1975) Sleep Research , vol.4 , pp. 262
    • Azumi, K.1    Shirakawa, S.2    Takahashi, S.3    Chase, M.H.4    Mitler, M.M.5    Walter, P.L.6
  • 28
    • 0026900138 scopus 로고
    • Improved procedure for complex demodulation and an application to frequency analysis of sleep spindles in EEG
    • Hao, Y. L., Ueda, Y., and Ishii, N., Improved procedure for complex demodulation and an application to frequency analysis of sleep spindles in EEG. Med. Biol. Eng. Compt. 30:406-412, 1992.
    • (1992) Med. Biol. Eng. Compt , vol.30 , pp. 406-412
    • Hao, Y.L.1    Ueda, Y.2    Ishii, N.3
  • 30
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning representations by back-propagating errors. Nature 323:533-536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 33
    • 0028784350 scopus 로고
    • A Neural network confirms that physical exercise reverses EEG changes in depressed rats
    • Sarbadhikari, S. N., A Neural network confirms that physical exercise reverses EEG changes in depressed rats. Med. Engg. Phy. 17:579-582, 1995.
    • (1995) Med. Engg. Phy , vol.17 , pp. 579-582
    • Sarbadhikari, S.N.1
  • 34
    • 0141926712 scopus 로고    scopus 로고
    • Artificial neural network detects changes in electro-encephalogram power spectrum of different sleep-wake states in an animal model of heat stress
    • Sinha, R. K., Artificial neural network detects changes in electro-encephalogram power spectrum of different sleep-wake states in an animal model of heat stress. Med. Biol. Eng. Comput. 41:595-600, 2003.
    • (2003) Med. Biol. Eng. Comput , vol.41 , pp. 595-600
    • Sinha, R.K.1
  • 35
    • 33750487531 scopus 로고    scopus 로고
    • An approach to estimate EEG power spectrum as an index of heat stress using backpropagation artificial neural network
    • Sinha, R. K., An approach to estimate EEG power spectrum as an index of heat stress using backpropagation artificial neural network. Med. Eng. Phy. 29:120-124, 2007.
    • (2007) Med. Eng. Phy , vol.29 , pp. 120-124
    • Sinha, R.K.1
  • 36
    • 0029278158 scopus 로고
    • Non-invasive identification of gastric contractions from surface electrogastrogram using backpropagation neural networks
    • Chen, J. D. Z., Lin, Z., Wu, Q., and McCallum, R. W., Non-invasive identification of gastric contractions from surface electrogastrogram using backpropagation neural networks. Med. Eng. Phy. 17:219-225, 1995.
    • (1995) Med. Eng. Phy , vol.17 , pp. 219-225
    • Chen, J.D.Z.1    Lin, Z.2    Wu, Q.3    McCallum, R.W.4
  • 37
    • 0034570409 scopus 로고    scopus 로고
    • Altered sleep and behavioral patterns in arthritic rats
    • Andersen, M. L., and Tufik, S., Altered sleep and behavioral patterns in arthritic rats. Sleep Res. Online 3:161-167, 2000.
    • (2000) Sleep Res. Online , vol.3 , pp. 161-167
    • Andersen, M.L.1    Tufik, S.2
  • 39
    • 0029758997 scopus 로고    scopus 로고
    • Past and future of computer assisted sleep analysis and drowsiness assessment
    • Hasan, J., Past and future of computer assisted sleep analysis and drowsiness assessment. J. Clin. Neurophysiol. 13:295-313, 1996.
    • (1996) J. Clin. Neurophysiol , vol.13 , pp. 295-313
    • Hasan, J.1
  • 40
    • 0030115464 scopus 로고    scopus 로고
    • The effects of morphine on the relationship between fetal EEG, breathing and blood pressure signals using fast wavelet transform
    • Akay, M., Akay, Y. M., and Szeto, H. H., The effects of morphine on the relationship between fetal EEG, breathing and blood pressure signals using fast wavelet transform. Biol. Cybern. 74:367-372, 1996.
    • (1996) Biol. Cybern , vol.74 , pp. 367-372
    • Akay, M.1    Akay, Y.M.2    Szeto, H.H.3
  • 41
    • 0031148991 scopus 로고    scopus 로고
    • Analysis of physiological time series using wavelet transforms
    • Figliola, A., and Serrano, E., Analysis of physiological time series using wavelet transforms. IEEE Eng. Med. Biol. Mag. 16:74-79, 1997.
    • (1997) IEEE Eng. Med. Biol. Mag , vol.16 , pp. 74-79
    • Figliola, A.1    Serrano, E.2
  • 42
    • 0037198393 scopus 로고    scopus 로고
    • Foci identification of spike discharges in the EEGs of sleeping El mice based on the electric field model and wavelet decomposition of multi monopolar derivations
    • Uchibori, M., Saito, K., Yokoyama, S., Sakamoto, Y., Suzuki, H., Tsuji, T., and Suzuki, K., Foci identification of spike discharges in the EEGs of sleeping El mice based on the electric field model and wavelet decomposition of multi monopolar derivations. J. Neurosci. Meth. 117:51-63, 2002.
    • (2002) J. Neurosci. Meth , vol.117 , pp. 51-63
    • Uchibori, M.1    Saito, K.2    Yokoyama, S.3    Sakamoto, Y.4    Suzuki, H.5    Tsuji, T.6    Suzuki, K.7
  • 43
  • 44
    • 0141717671 scopus 로고    scopus 로고
    • Analysis of rat electroencephalogram during slow wave sleep and transition sleep using wavelet transform
    • Zhou-Yan, F., Analysis of rat electroencephalogram during slow wave sleep and transition sleep using wavelet transform. Acta Bioch. Bioph. Sin. 35:741-746, 2003.
    • (2003) Acta Bioch. Bioph. Sin , vol.35 , pp. 741-746
    • Zhou-Yan, F.1
  • 45
    • 43749102069 scopus 로고    scopus 로고
    • EEG feature extraction based on wavelet packet decomposition for brain computer interface
    • DOI 10.1016/j.measurement.2007.07.007
    • Ting, W., Guo-zheng, Y, Bang-hua, Y., and Hong, S., EEG feature extraction based on wavelet packet decomposition for brain computer interface, Measurement, DOI 10.1016/j.measurement.2007.07.007.
    • Measurement
    • Ting, W.1    Guo-Zheng Bang-Hua Y, Y.2    Hong, S.3
  • 46
    • 0036618179 scopus 로고    scopus 로고
    • Comparison of wavelet transform and FFT methods in the analysis of EEG signals
    • Akin, M., Comparison of wavelet transform and FFT methods in the analysis of EEG signals. J. Med. Syst. 26:241-247, 2002.
    • (2002) J. Med. Syst , vol.26 , pp. 241-247
    • Akin, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.