메뉴 건너뛰기




Volumn 49, Issue 3, 2010, Pages 230-237

Classification of sleep stages using multi-wavelet time frequency entropy and LDA

Author keywords

Linear discriminant analysis; Multi wavelets; Sleep stage scoring; Time frequency entropy

Indexed keywords

ARTICLE; CLASSIFICATION; HUMAN; METHODOLOGY; SLEEP STAGE; STATISTICAL MODEL;

EID: 77952334576     PISSN: 00261270     EISSN: None     Source Type: Journal    
DOI: 10.3414/ME09-01-0054     Document Type: Article
Times cited : (75)

References (31)
  • 2
    • 0003920933 scopus 로고
    • A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects
    • U.S. Government Printing Office, Washington DC
    • Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Public Health Service 1968, U.S. Government Printing Office, Washington DC.
    • (1968) Public Health Service
    • Rechtschaffen, A.1    Kales, A.2
  • 7
    • 73449131554 scopus 로고    scopus 로고
    • Automatic determination of sleep stage through bio-neurological signals contaminated with artifacts by conditional probability of a knowledge base
    • Wang B, Xingyu W, Junzhong Z, Fusae K, Masatoshi N. Automatic determination of sleep stage through bio-neurological signals contaminated with artifacts by conditional probability of a knowledge base. Artif Life Robotics 2008; 12: 270-275.
    • (2008) Artif Life Robotics , vol.12 , pp. 270-275
    • Wang, B.1    Xingyu, W.2    Junzhong, Z.3    Fusae, K.4    Masatoshi, N.5
  • 8
    • 0342398227 scopus 로고    scopus 로고
    • Discrimination of sleep stages: A comparison between spectral and nonlinear EEG measures
    • DOI 10.1016/0013-4694(96)95636-9
    • Fell J, Röschke J, Mann K, Schäffner C. Discrimination of sleep stages: a comparison between spectral and nonlinear EEG measures. Electroencephalography and Clinical Neurophysiology 1996; 98 (5): 401-410. (Pubitemid 26168140)
    • (1996) Electroencephalography and Clinical Neurophysiology , vol.98 , Issue.5 , pp. 401-410
    • Fell, J.1    Roschke, J.2    Mann, K.3    Schaffner, C.4
  • 11
    • 0033116525 scopus 로고    scopus 로고
    • Autodetection of characteristics of sleep EEG with integration of multichannel information by neural networks and fuzzy rules
    • Shimada T, Shiina T. Autodetection of characteristics of sleep EEG with integration of multichannel information by neural networks and fuzzy rules. Systems and Computers in Japan 1999; 30 (4): 1-10.
    • (1999) Systems and Computers in Japan , vol.30 , Issue.4 , pp. 1-10
    • Shimada, T.1    Shiina, T.2
  • 12
    • 2542452926 scopus 로고    scopus 로고
    • Sleep stage classification using fuzzy sets and machine learning techniques
    • Pinero P, Garcia P, Arco L, Alvarezc A, Garc M, Bonal R. Sleep stage classification using fuzzy sets and machine learning techniques. Neurocomputing 2004; 58: 1137-1143.
    • (2004) Neurocomputing , vol.58 , pp. 1137-1143
    • Pinero, P.1    Garcia, P.2    Arco, L.3    Alvarezc, A.4    Garc, M.5    Bonal, R.6
  • 14
    • 0017490015 scopus 로고
    • Feature extraction from the EEG by adaptive segmentation
    • Bodenstein G, Praetorius H. Feature extraction from the EEG by adaptive segmentation. Proc IEEE 1977; 65: 642-653.
    • (1977) Proc IEEE , vol.65 , pp. 642-653
    • Bodenstein, G.1    Praetorius, H.2
  • 16
    • 22944478627 scopus 로고    scopus 로고
    • Time-variant parametric estimation of transient quadratic phase couplings during electroencephalographic burst activity
    • Schwab K, Eiselt M, Schelenz C, Witte H. Time-variant Parametric Estimation of Transient Quadratic Phase Couplings during Electroencephalographic Burst Activity. Methods Inf Med 2005; 44 (3): 374-383.
    • (2005) Methods Inf Med , vol.44 , Issue.3 , pp. 374-383
    • Schwab, K.1    Eiselt, M.2    Schelenz, C.3    Witte, H.4
  • 17
    • 34247508089 scopus 로고    scopus 로고
    • Wavelet-based fractal features with active segment selection: Application to single-trial EEG data
    • Wei-Yen H, Chou-Ching L, Min-Shaung J, Yung-Nein S. Wavelet-based fractal features with active segment selection: Application to single-trial EEG data. Journal of Neuroscience Methods 2007; 163: 145-160.
    • (2007) Journal of Neuroscience Methods , vol.163 , pp. 145-160
    • Wei-Yen, H.1    Chou-Ching, L.2    Min-Shaung, J.3    Yung-Nein, S.4
  • 18
    • 33947428811 scopus 로고    scopus 로고
    • Subject-based feature extraction using fuzzy wavelet packet in brain-computer interfaces
    • Bang-hua Y, Guo-zheng Y, Ting W, Rong-guo Y. Subject-based feature extraction using fuzzy wavelet packet in brain-computer interfaces. Signal Processing 2007; 87: 1569-1574.
    • (2007) Signal Processing , vol.87 , pp. 1569-1574
    • Bang-Hua, Y.1    Guo-Zheng, Y.2    Ting, W.3    Rong-Guo, Y.4
  • 19
    • 33846086490 scopus 로고    scopus 로고
    • Feature extraction for EEG-based brain-computer interfaces by wavelet packet best basis decomposition
    • Bang-hua Y, Guo-zheng Y, Rong-guo Y, Ting W. Feature extraction for EEG-based brain-computer interfaces by wavelet packet best basis decomposition. Journal of Neural Engineering 2006; 3: 251-256.
    • (2006) Journal of Neural Engineering , vol.3 , pp. 251-256
    • Bang-Hua, Y.1    Guo-Zheng, Y.2    Rong-Guo, Y.3    Ting, W.4
  • 20
    • 77952418898 scopus 로고    scopus 로고
    • Wavelet analysis
    • ISBN 0-8176-3962-4
    • Walnut D. Wavelet Analysis. Birkhauser; 2002. ISBN 0-8176-3962-4
    • (2002) Birkhauser
    • Walnut, D.1
  • 25
    • 17744374301 scopus 로고    scopus 로고
    • Classification of EEG signals using neural network and logistic regression
    • DOI 10.1016/j.cmpb.2004.10.009
    • Subasi A, Ercelebi E. Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine 2005; 78: 87-99. (Pubitemid 40575687)
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , Issue.2 , pp. 87-99
    • Subasi, A.1    Ercelebi, E.2
  • 26
    • 14744284163 scopus 로고    scopus 로고
    • The Kappa statistics in reliability studies: Use, interpretation, and sample size requirements
    • Sim J, Wrigth C. The Kappa statistics in reliability studies: use, interpretation, and sample size requirements. Physical Therapy 2005; 85 (3): 257-268.
    • (2005) Physical Therapy , vol.85 , Issue.3 , pp. 257-268
    • Sim, J.1    Wrigth, C.2
  • 27
  • 28
    • 0036786692 scopus 로고    scopus 로고
    • Automatic sleep stage scoring based on waveform recognition method and decision tree
    • Hanaoka M, Kobayashi M, Yamazaki H. Automatic sleep stage scoring based on waveform recognition method and decision tree. Systems and Computers in Japan 2002; 33 (11): 2672-2683.
    • (2002) Systems and Computers in Japan , vol.33 , Issue.11 , pp. 2672-2683
    • Hanaoka, M.1    Kobayashi, M.2    Yamazaki, H.3
  • 29
    • 77956062148 scopus 로고    scopus 로고
    • Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG
    • Published online April 2009
    • Tagluk M, Sezgin N, Akin M. Estimation of sleep stages by an artificial neural network employing EEG, EMG and EOG. Journal of Medical Systems 2009. Published online April 2009.
    • (2009) Journal of Medical Systems
    • Tagluk, M.1    Sezgin, N.2    Akin, M.3
  • 30
    • 0033770615 scopus 로고    scopus 로고
    • Automated sleep stage scoring using hybrid rule and cased based reasoning
    • Park H, Oh J, Jeong D, Park S. Automated sleep stage scoring using hybrid rule and cased based reasoning. Computers and Biomedical Research 2000; 33: 330-349.
    • (2000) Computers and Biomedical Research , vol.33 , pp. 330-349
    • Park, H.1    Oh, J.2    Jeong, D.3    Park, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.