메뉴 건너뛰기




Volumn 2014, Issue 1, 2014, Pages

One-class kernel subspace ensemble for medical image classification

Author keywords

Biopsy image; Breast cancer diagnosis; Classifier ensemble; Kernel principle component analysis; One class classifier

Indexed keywords

BIOPSY; CLASSIFICATION (OF INFORMATION); DISEASES; MEDICAL IMAGING; OPTICAL TOMOGRAPHY; PRINCIPAL COMPONENT ANALYSIS;

EID: 84894693790     PISSN: 16876172     EISSN: 16876180     Source Type: Journal    
DOI: 10.1186/1687-6180-2014-17     Document Type: Article
Times cited : (101)

References (59)
  • 2
    • 2342559111 scopus 로고    scopus 로고
    • A survey on histological image analysis-based assessment of three major biological factors influencing radiotherapy: Proliferation, hypoxia and vasculature
    • 10.1016/j.cmpb.2003.07.001
    • Loukas C: A survey on histological image analysis-based assessment of three major biological factors influencing radiotherapy: proliferation, hypoxia and vasculature. Comput. Methods Programs Biomed 2004,74(3):183-199.
    • (2004) Comput. Methods Programs Biomed , vol.74 , Issue.3 , pp. 183-199
    • Loukas, C.1
  • 3
    • 45049083228 scopus 로고    scopus 로고
    • WND-CHARM: Multi-purpose image classification using compound image transforms
    • 10.1016/j.patrec.2008.04.013
    • Orlov N, Shamir L, Macura T, Johnston J, Eckley DM, Goldberg IG: WND-CHARM: multi-purpose image classification using compound image transforms. Pattern Recognit. Lett 2008,29(11):1684-1693.
    • (2008) Pattern Recognit. Lett , vol.29 , Issue.11 , pp. 1684-1693
    • Orlov, N.1    Shamir, L.2    Macura, T.3    Johnston, J.4    Eckley, D.M.5    Goldberg, I.G.6
  • 5
    • 0037753593 scopus 로고    scopus 로고
    • Thesis, Delft University of Technology
    • Tax D: One-class classification. Thesis, Delft University of Technology, 2001
    • (2001) One-class Classification
    • Tax, D.1
  • 6
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • 10.1007/s10462-009-9124-7
    • Rokach L: Ensemble-based classifiers. Artif. Intell. Rev 2010, 33:1-39.
    • (2010) Artif. Intell. Rev , vol.33 , pp. 1-39
    • Rokach, L.1
  • 7
    • 27644532699 scopus 로고    scopus 로고
    • Using one-class and two-class SVMs for multiclass image annotation
    • 10.1109/TKDE.2005.170
    • Goh K-S, Chang EY, Li B: Using one-class and two-class SVMs for multiclass image annotation. IEEE Trans. Knowl. Data Eng 2005,17(10):1333-1346.
    • (2005) IEEE Trans. Knowl. Data Eng , vol.17 , Issue.10 , pp. 1333-1346
    • Goh, K.-S.1    Chang, E.Y.2    Li, B.3
  • 8
    • 67349162179 scopus 로고    scopus 로고
    • Combining different biometric traits with one-class classification
    • 10.1016/j.sigpro.2009.04.043 1169.94308
    • Bergamini C, Oliveira L, Koerich A, Sabourin R: Combining different biometric traits with one-class classification. Signal Process 2009, 89:2117-2127.
    • (2009) Signal Process , vol.89 , pp. 2117-2127
    • Bergamini, C.1    Oliveira, L.2    Koerich, A.3    Sabourin, R.4
  • 9
    • 80053576495 scopus 로고    scopus 로고
    • Creating and measuring diversity in multiple classifier systems using support vector data description
    • 10.1016/j.asoc.2011.06.006
    • Haghighi MS, Vahedian A, Yazdi HS: Creating and measuring diversity in multiple classifier systems using support vector data description. Appl. Soft Comput 2011, 11:4931-4942.
    • (2011) Appl. Soft Comput , vol.11 , pp. 4931-4942
    • Haghighi, M.S.1    Vahedian, A.2    Yazdi, H.S.3
  • 10
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • 10.1016/S0031-3203(02)00121-8 1033.68092
    • Bryll R, Guitierrez-Osuna R, Quek F: Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognit 2003, 36:1291-1302.
    • (2003) Pattern Recognit , vol.36 , pp. 1291-1302
    • Bryll, R.1    Guitierrez-Osuna, R.2    Quek, F.3
  • 11
    • 0034314744 scopus 로고    scopus 로고
    • Designing classifier fusion systems by genetic algorithms
    • 10.1109/4235.887233
    • Kuncheva L, Jain LC: Designing classifier fusion systems by genetic algorithms. IEEE Trans. Evol. Comput 2000,4(4):327-336.
    • (2000) IEEE Trans. Evol. Comput , vol.4 , Issue.4 , pp. 327-336
    • Kuncheva, L.1    Jain, L.C.2
  • 12
    • 80052087210 scopus 로고    scopus 로고
    • On combining multiple features for hyperspectral remote sensing image classification
    • 10.1109/TGRS.2011.2162339
    • Zhang L, Zhang L: On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geoscience Remote Sensing 2012,50(3):879-893.
    • (2012) IEEE Trans. Geoscience Remote Sensing , vol.50 , Issue.3 , pp. 879-893
    • Zhang, L.1    Zhang, L.2
  • 13
    • 84859369615 scopus 로고    scopus 로고
    • Image classification by multimodal subspace learning
    • 10.1016/j.patrec.2012.02.002
    • Yu J, Lin F, Seah H-S, Li C, Lin Z: Image classification by multimodal subspace learning. Pattern Recognit. Lett 2012, 33:1196-1204.
    • (2012) Pattern Recognit. Lett , vol.33 , pp. 1196-1204
    • Yu, J.1    Lin, F.2    Seah, H.-S.3    Li, C.4    Lin, Z.5
  • 16
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-part 1: Statistical approaches
    • 10.1016/j.sigpro.2003.07.018 1145.94402
    • Markou M, Singh S: Novelty detection: a review-part 1: statistical approaches. Signal Process 2003, 83:2481-2497.
    • (2003) Signal Process , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 17
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review-part 2: Neural network based approaches
    • 10.1016/j.sigpro.2003.07.019 1145.94403
    • Markou M, Singh S: Novelty detection: a review-part 2: neural network based approaches. Signal Processing 2003, 83:2499-2521.
    • (2003) Signal Processing , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 18
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • 10.1016/S0167-8655(99)00087-2
    • Tax DM, Duin RP: Support vector domain description. Pattern Recognit. Lett 1999, 20:1191-1199.
    • (1999) Pattern Recognit. Lett , vol.20 , pp. 1191-1199
    • Tax, D.M.1    Duin, R.P.2
  • 19
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • 10.1023/B:MACH.0000008084.60811.49 1078.68728
    • Tax DM, Duin RP: Support vector data description. Mach. Learn 2004, 54:45-66.
    • (2004) Mach. Learn , vol.54 , pp. 45-66
    • Tax, D.M.1    Duin, R.P.2
  • 20
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high dimensional distribution
    • 10.1162/089976601750264965 1009.62029
    • Schölkopf B, Platt J, Shawe-Taylor J, Smola A, Williamson RC: Estimating the support of a high dimensional distribution. Neural Comput 2001,13(7):1443-1472.
    • (2001) Neural Comput , vol.13 , Issue.7 , pp. 1443-1472
    • Schölkopf, B.1    Platt, J.2    Shawe-Taylor, J.3    Smola, A.4    Williamson, R.C.5
  • 21
    • 85096855936 scopus 로고    scopus 로고
    • One-class SVMs for document classification
    • Manevitz LM, Yousef M: One-class SVMs for document classification. J. Mach. Learn. Res 2001, 2:139-154.
    • (2001) J. Mach. Learn. Res , vol.2 , pp. 139-154
    • Manevitz, L.M.1    Yousef, M.2
  • 23
    • 33645717587 scopus 로고    scopus 로고
    • Kernel fisher discriminants for outlier detection
    • 10.1162/neco.2006.18.4.942 1095.68673 2204796
    • Roth V: Kernel fisher discriminants for outlier detection. Neural Comput 2006, 18:942-960.
    • (2006) Neural Comput , vol.18 , pp. 942-960
    • Roth, V.1
  • 29
    • 33750522220 scopus 로고    scopus 로고
    • Kernel PCA for novelty detection
    • 10.1016/j.patcog.2006.07.009 1118.68140
    • Hoffmann H: Kernel PCA for novelty detection. Pattern Recognit 2007, 40:863-874.
    • (2007) Pattern Recognit , vol.40 , pp. 863-874
    • Hoffmann, H.1
  • 31
    • 70349303511 scopus 로고    scopus 로고
    • Ensembles of one class support vector machines
    • Springer Berlin 10.1007/978-3-642-02326-2-19
    • Shieh AD, Kamm DF: Ensembles of one class support vector machines. In Proceedings of the Multiple Classifier Systems. Berlin: Springer; 2009:181-190.
    • (2009) Proceedings of the Multiple Classifier Systems , pp. 181-190
    • Shieh, A.D.1    Kamm, D.F.2
  • 33
    • 60349101742 scopus 로고    scopus 로고
    • Using an ensemble of one-class SVM classifiers to harden payload-based anomaly detection systems
    • IEEE Computer Society Piscataway
    • Perdisci R, Gu G: Using an ensemble of one-class SVM classifiers to harden payload-based anomaly detection systems. In Proceedings of the IEEE International Conference on Data Mining (ICDM 2006). Piscataway: IEEE Computer Society; 2006:488-498.
    • (2006) Proceedings of the IEEE International Conference on Data Mining (ICDM 2006) , pp. 488-498
    • Perdisci, R.1    Gu, G.2
  • 35
    • 78951491903 scopus 로고    scopus 로고
    • A review of ensemble methods in bioinformatics
    • 10.2174/157489310794072508
    • Yang P, Yang YH, Zhou BB, Zomaya AY: A review of ensemble methods in bioinformatics. Curr. Bioinformatics 2010,5(4):296-308.
    • (2010) Curr. Bioinformatics , vol.5 , Issue.4 , pp. 296-308
    • Yang, P.1    Yang, Y.H.2    Zhou, B.B.3    Zomaya, A.Y.4
  • 37
    • 26444514978 scopus 로고    scopus 로고
    • An abnormal ecg beat detector approach for long-term monitoring of heart patients based on hybrid kernel machine ensemble
    • Springer Heidelberg 10.1007/11494683-35
    • Li P, Chan KL, Fu S, Krishnan SM: An abnormal ecg beat detector approach for long-term monitoring of heart patients based on hybrid kernel machine ensemble. In Proceedings of the International Workshop on Multiple Classifier Systems (MCS 2005). Heidelberg: Springer; 2005:346-355.
    • (2005) Proceedings of the International Workshop on Multiple Classifier Systems (MCS 2005) , pp. 346-355
    • Li, P.1    Chan, K.L.2    Fu, S.3    Krishnan, S.M.4
  • 38
    • 61449159874 scopus 로고    scopus 로고
    • Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors
    • 10.1016/j.artmed.2008.08.004
    • Okun O, Priisalu H: Dataset complexity in gene expression based cancer classification using ensembles of k-nearest neighbors. Artif. Intell. Med 2009, 45:151-162.
    • (2009) Artif. Intell. Med , vol.45 , pp. 151-162
    • Okun, O.1    Priisalu, H.2
  • 39
    • 0011921589 scopus 로고    scopus 로고
    • The kernel trick for distances
    • Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052
    • Schölkopf B: The kernel trick for distances. Technical report MSR-TR-2000-51, Microsoft Research, Microsoft Corporation, One Microsoft Way, Redmond, WA 98052 (2000)
    • (2000) Technical Report MSR-TR-2000-51
    • Schölkopf, B.1
  • 40
    • 84878879981 scopus 로고    scopus 로고
    • Non-negativity constraints on the pre-image for pattern recognition with kernel machines
    • 10.1016/j.patcog.2013.03.021
    • Kallas M, Honeine P, Richard C, Francis C, Amoud H: Non-negativity constraints on the pre-image for pattern recognition with kernel machines. Pattern Recognit 2013, 46:3066-3080.
    • (2013) Pattern Recognit , vol.46 , pp. 3066-3080
    • Kallas, M.1    Honeine, P.2    Richard, C.3    Francis, C.4    Amoud, H.5
  • 42
    • 9244258603 scopus 로고    scopus 로고
    • The pre-image problem in kernel methods
    • 10.1109/TNN.2004.837781
    • Kwok JT-Y, Tsang IW-H: The pre-image problem in kernel methods. IEEE Trans. Neural Netw 2004,15(6):1517-1525.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.6 , pp. 1517-1525
    • Kwok, J.-Y.1    Tsang, I.-H.2
  • 43
    • 77950860472 scopus 로고    scopus 로고
    • Penalized preimage learning in kernel principle component analysis
    • 10.1109/TNN.2009.2039647
    • Zheng W-S, Lai J, Yuen PC: Penalized preimage learning in kernel principle component analysis. IEEE Trans. Neural Netw 2010,21(4):551-570.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.4 , pp. 551-570
    • Zheng, W.-S.1    Lai, J.2    Yuen, P.C.3
  • 44
    • 84898939890 scopus 로고    scopus 로고
    • On a connection between kernel PCA and metric multidimensional scaling
    • MIT Press Cambridge
    • Williams C: On a connection between kernel PCA and metric multidimensional scaling. In Advances in Neural Information Processing Systems 13, NIPS 2001. Cambridge: MIT Press; 2001:675-681.
    • (2001) Advances in Neural Information Processing Systems 13, NIPS 2001 , pp. 675-681
    • Williams, C.1
  • 47
    • 84894830635 scopus 로고    scopus 로고
    • Accessed 22 June 2013
    • Breast cancer data. http://ftp.cs.technion.ac.il/pub/projects/medic- image. Accessed 22 June 2013
    • Breast Cancer Data
  • 48
    • 34250666040 scopus 로고    scopus 로고
    • UCI Accessed 22 June 2013
    • UCI: Machine learning repository. http://archive.ics.uci.edu/ml/datasets/ . Accessed 22 June 2013
    • Machine Learning Repository
  • 49
    • 77952607168 scopus 로고    scopus 로고
    • A completed modeling of local binary pattern operator for texture classification
    • 10.1109/TIP.2010.2044957 2814628
    • Guo Z, Zhang L, Zhang D: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process 2010,19(6):1657-1663.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.6 , pp. 1657-1663
    • Guo, Z.1    Zhang, L.2    Zhang, D.3
  • 52
    • 84885192200 scopus 로고    scopus 로고
    • Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles
    • doi:10.1007/s00138-012-0459-8
    • Zhang Y, Zhang B, Coenen F, Lu W: Breast cancer diagnosis from biopsy images with highly reliable random subspace classifier ensembles. Mach. Vis. Appl 2012, 1-17. doi:10.1007/s00138-012-0459-8
    • (2012) Mach. Vis. Appl , pp. 1-17
    • Zhang, Y.1    Zhang, B.2    Coenen, F.3    Lu, W.4
  • 53
    • 84894747735 scopus 로고    scopus 로고
    • Age-related macular degeneration identification in volumetric optical coherence tomography using decomposition and local feature extraction
    • University of Birmingham, 17-19 July
    • Albarrak A, Coenen F, Zheng Y: Age-related macular degeneration identification in volumetric optical coherence tomography using decomposition and local feature extraction. In Proceedings of 2013 International Conference on Medical Image, Understanding and Analysis. University of Birmingham; 17-19 July 2013:59-64.
    • (2013) Proceedings of 2013 International Conference on Medical Image, Understanding and Analysis , pp. 59-64
    • Albarrak, A.1    Coenen, F.2    Zheng, Y.3
  • 55
    • 84894838552 scopus 로고    scopus 로고
    • Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer
    • Doyle S, Feldman MD, Shih N, Tomaszewki J, Madabhushi A: Cascaded discrimination of normal, abnormal, and confounder classes in histopathology: Gleason grading of prostate cancer. BMC Bioinformatics 2012,13(282):1-15.
    • (2012) BMC Bioinformatics , vol.13 , Issue.282 , pp. 1-15
    • Doyle, S.1    Feldman, M.D.2    Shih, N.3    Tomaszewki, J.4    Madabhushi, A.5
  • 57
    • 38149020642 scopus 로고    scopus 로고
    • Performance analysis of classifier ensembles: Neural networks versus nearest neighbor rule
    • 10.1007/978-3-540-72847-4-15
    • Valdovinos R, Sanchez J: Performance analysis of classifier ensembles: neural networks versus nearest neighbor rule. Pattern Recognit Image Anal. (Lecture Notes in Computer Science) 2007, 4477:105-112.
    • (2007) Pattern Recognit Image Anal. (Lecture Notes in Computer Science) , vol.4477 , pp. 105-112
    • Valdovinos, R.1    Sanchez, J.2
  • 59
    • 84863220843 scopus 로고    scopus 로고
    • Diagnosing breast masses in digital mammography using feature selection and ensemble methods
    • 10.1007/s10916-010-9518-8 2948056
    • Luo S, Cheng B: Diagnosing breast masses in digital mammography using feature selection and ensemble methods. J. Med. Syst 2012,36(2):569-577.
    • (2012) J. Med. Syst , vol.36 , Issue.2 , pp. 569-577
    • Luo, S.1    Cheng, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.