-
1
-
-
0003922190
-
-
Hoboken, NJ: Wiley
-
Duda, R., Hart, P., & Stork, D. (2001). Pattern classification. Hoboken, NJ: Wiley.
-
(2001)
Pattern Classification
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
3
-
-
21844486429
-
Penalized discriminant analysis
-
Hastie, T., Buja, A., & Tibshirani, R. (1995). Penalized discriminant analysis. Annals of Statistics, 23, 73-102.
-
(1995)
Annals of Statistics
, vol.23
, pp. 73-102
-
-
Hastie, T.1
Buja, A.2
Tibshirani, R.3
-
7
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
Y.-H. Hu, J. Larsen, E. Wilson, & S. Douglas (Eds.). Piscataway, NJ: IEEE
-
Mika, S., Rätsch, G., Weston, J., Schölkopf, B., & Müller, K.-R. (1999). Fisher discriminant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, & S. Douglas (Eds.), Neural networks for signal processing IX (pp. 41-48). Piscataway, NJ: IEEE.
-
(1999)
Neural Networks for Signal Processing IX
, pp. 41-48
-
-
Mika, S.1
Rätsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.-R.5
-
8
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
-
J. Moody, S. Hanson, & R. Lippmann (Eds.). Cambridge, MA: MIT Press
-
Moody, J. (1992). The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems. In J. Moody, S. Hanson, & R. Lippmann (Eds.), Advances in neural information processing systems, 4 (pp. 847-854). Cambridge, MA: MIT Press.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 847-854
-
-
Moody, J.1
-
9
-
-
84898984897
-
Nonlinear discriminant analysis using kernel functions
-
S. Solla, T. Leen, & K.-R. Müller (Eds.). Cambridge, MA: MIT Press
-
Roth, V., & Steinhage, V. (2000). Nonlinear discriminant analysis using kernel functions. In S. Solla, T. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 568-574). Cambridge, MA: MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 568-574
-
-
Roth, V.1
Steinhage, V.2
-
10
-
-
0032594954
-
Input space vs. feature space in kernel-based methods
-
Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K.-R., Rätsch, G., & Smola, A. (1999). Input space vs. feature space in kernel-based methods. IEEE Trans. Neural Networks, 10(5), 1000-1017.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.3
Knirsch, P.4
Müller, K.-R.5
Rätsch, G.6
Smola, A.7
-
12
-
-
84898941932
-
SV estimation of a distribution's support
-
S. Solla, T. Leen, & K.-R. Müller (Eds.). Cambridge, MA: MIT Press
-
Schölkopf, B., Williamson, R., Smola, A., & Shawe-Taylor, J. (2000). SV estimation of a distribution's support. In S. Solla, T. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 582-588). Cambridge, MA: MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 582-588
-
-
Schölkopf, B.1
Williamson, R.2
Smola, A.3
Shawe-Taylor, J.4
-
13
-
-
0033220728
-
Support vector data description
-
Tax, D., & Duin, R. (1999). Support vector data description. Pattern Recognition Letters, 20(11-13), 1191-1199.
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.11-13
, pp. 1191-1199
-
-
Tax, D.1
Duin, R.2
-
14
-
-
14644402543
-
Asymptotic optimality of likelihood-based cross-validation
-
art. 4
-
van der Laan, M., Dudoit, S., & Keles, S. (2004). Asymptotic optimality of likelihood-based cross-validation. Statistical Applications in Genetics and Molecular Biology, 3(1), art. 4.
-
(2004)
Statistical Applications in Genetics and Molecular Biology
, vol.3
, Issue.1
-
-
Van Der Laan, M.1
Dudoit, S.2
Keles, S.3
|