메뉴 건너뛰기




Volumn 36, Issue 2, 2012, Pages 569-577

Diagnosing breast masses in digital mammography using feature selection and ensemble methods

Author keywords

Breast cancer; Digital mammography; Ensemble classifiers; Feature selection

Indexed keywords

ARTICLE; BREAST CANCER; CLASSIFICATION ALGORITHM; DATA MINING; DECISION TREE; DIAGNOSTIC ACCURACY; DIAGNOSTIC IMAGING; DIAGNOSTIC TEST ACCURACY STUDY; DIGITAL MAMMOGRAPHY; ENSEMBLE CLASSIFICATION; FEATURE SELECTION; FEMALE; HUMAN; INTERMETHOD COMPARISON; MACHINE LEARNING; MAJOR CLINICAL STUDY; PREDICTION; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY; SEQUENTIAL MINIMAL OPTIMIZATION ALGORITHM; STATISTICAL ANALYSIS; SUPPORT VECTOR MACHINE; AGE; BREAST TUMOR; DECISION SUPPORT SYSTEM; IMAGE PROCESSING; MAMMOGRAPHY; METHODOLOGY; PREDICTIVE VALUE; RADIOGRAPHY;

EID: 84863220843     PISSN: 01485598     EISSN: 1573689X     Source Type: Journal    
DOI: 10.1007/s10916-010-9518-8     Document Type: Article
Times cited : (58)

References (51)
  • 1
    • 34250832163 scopus 로고    scopus 로고
    • Predicting metastasis in breast cancer: Comparing a decision tree with domain experts
    • DOI 10.1007/s10916-007-9064-1
    • Razavi, A. R., Gill, H., Åhlfeldt, H., and Shahsavar, N., Predicting metastasis in breast cancer: comparing a decision tree with domain experts. J. Med. Syst. 31:263-273, 2007. (Pubitemid 46988153)
    • (2007) Journal of Medical Systems , vol.31 , Issue.4 , pp. 263-273
    • Razavi, A.R.1    Gill, H.2    Ahlfeldt, H.3    Shahsavar, N.4
  • 2
    • 0037068957 scopus 로고    scopus 로고
    • Long-term survival rates of cancer patients achieved by the end of the 20th century: A period analysis
    • DOI 10.1016/S0140-6736(02)11199-8
    • Brenner, H., Long-term survival rates of cancer patients achieved by the end of the 20th century: a period analysis. Lancet. 360:1131-1135, 2002. (Pubitemid 35246487)
    • (2002) Lancet , vol.360 , Issue.9340 , pp. 1131-1135
    • Brenner, H.1
  • 3
    • 0037117140 scopus 로고    scopus 로고
    • Long-term effects of mammography screening: Updated overview of the Swedish randomised trials
    • DOI 10.1016/S0140-6736(02)08020-0
    • Nystrom, L., Andersson, I., Bjurstam, N., Frisell, J., Nordenskjold, B., and Rutqvist, L. E., Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet. 359(9310):909-919, 2002. (Pubitemid 34246378)
    • (2002) Lancet , vol.359 , Issue.9310 , pp. 909-919
    • Nystrom, L.1    Andersson, I.2    Bjurstam, N.3    Frisell, J.4    Nordenskjold, B.5    Rutqvist, L.E.6
  • 8
    • 39549123613 scopus 로고    scopus 로고
    • Diagnostic accuracy of digital versus film mammography: Exploratory analysis of selected population subgroups in DMIST
    • Pisano, E. D., Gatonis, C., Hendrick, E., Yaffe, M., Baum, J. K., Acharyya, S., et al., Diagnostic accuracy of digital versus film mammography: exploratory analysis of selected population subgroups in DMIST. Radiology. 246(3):376-383, 2008.
    • (2008) Radiology. , vol.246 , Issue.3 , pp. 376-383
    • Pisano, E.D.1    Gatonis, C.2    Hendrick, E.3    Yaffe, M.4    Baum, J.K.5    Acharyya, S.6
  • 10
    • 0001676059 scopus 로고
    • Adaptive noise equalization and recognition of microcalcification clusters in mammograms
    • Karssemeijer, N., Adaptive noise equalization and recognition of microcalcification clusters in mammograms. Int. J. Pattern. Recog. Artificial. Intell. 7(6):1357-1376, 1993.
    • (1993) Int. J. Pattern. Recog. Artificial. Intell. , vol.7 , Issue.6 , pp. 1357-1376
    • Karssemeijer, N.1
  • 11
    • 0003031283 scopus 로고
    • Nonparametric spatio-temporal change point analysis for early detection in mammography
    • Gale, A. G., Astley, S. M., Dance, D. R., and Cairns, A. Y. (Eds.), Elsevier, Amsterdam
    • Priebe, C. E., Lorey, R. A., Marchette, D. J., Solka, J. L., and Rogers, G. W., Nonparametric spatio-temporal change point analysis for early detection in mammography. In: Gale, A. G., Astley, S. M., Dance, D. R., and Cairns, A. Y. (Eds.), Digital mammography. Elsevier, Amsterdam, pp. 111-120, 1994.
    • (1994) Digital Mammography , pp. 111-120
    • Priebe, C.E.1    Lorey, R.A.2    Marchette, D.J.3    Solka, J.L.4    Rogers, G.W.5
  • 13
    • 0031685272 scopus 로고    scopus 로고
    • Do groups of women aged 50 to 75 match the national average mammography rate?
    • DOI 10.1016/S0749-3797(98)00048-8, PII S0749379798000488
    • Rakowski, W., and Clark, M. A., Do groups of women aged 50-75 match the national average mammography rate? Am. J. Prev. Med. 15(3):187-197, 1998. (Pubitemid 28443376)
    • (1998) American Journal of Preventive Medicine , vol.15 , Issue.3 , pp. 187-197
    • Rakowski, W.1    Clark, M.A.2
  • 14
    • 63849134851 scopus 로고    scopus 로고
    • A logistic regression model based on the national mammography database format to aid breast cancer diagnosis
    • Chhatwal, J., Alagoz, O., Lindstrom, M. J., Kahn, C. E., Jr., Shaffer, K. A., and Burnside, E. S., A logistic regression model based on the national mammography database format to aid breast cancer diagnosis. Am. J. Roentgenol. 192(4):1117-1127, 2009.
    • (2009) Am. J. Roentgenol. , vol.192 , Issue.4 , pp. 1117-1127
    • Chhatwal, J.1    Alagoz, O.2    Lindstrom, M.J.3    Kahn Jr., C.E.4    Shaffer, K.A.5    Burnside, E.S.6
  • 15
    • 0002213963 scopus 로고    scopus 로고
    • A fuzzy segmentation algorithm for mammogram partitioning
    • Doi, K., Giger, M. L., Nishikawa, R. M., and Schmidt, R. A. (Eds.), Elsevier, Amsterdam
    • Sameti, M., and Ward, R. K., A fuzzy segmentation algorithm for mammogram partitioning. In: Doi, K., Giger, M. L., Nishikawa, R. M., and Schmidt, R. A. (Eds.), Third international workshop on digital mammography. Elsevier, Amsterdam, pp. 471-474, 1996.
    • (1996) Third International Workshop on Digital Mammography , pp. 471-474
    • Sameti, M.1    Ward, R.K.2
  • 16
    • 45249106042 scopus 로고    scopus 로고
    • Comparison of image quality for different digital mammogram image processing parameter settings versus analogue film
    • Qian, W., Sunden, P., Sjostrom, H., Fenger-Krog, H., and Brodin, U., Comparison of image quality for different digital mammogram image processing parameter settings versus analogue film. Electromedica. 71(1):2-6, 2003.
    • (2003) Electromedica. , vol.71 , Issue.1 , pp. 2-6
    • Qian, W.1    Sunden, P.2    Sjostrom, H.3    Fenger-Krog, H.4    Brodin, U.5
  • 17
    • 0035263429 scopus 로고    scopus 로고
    • A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques
    • DOI 10.1109/4233.908389, PII S1089777101017046
    • Verma, B., and Zakos, J. A., Computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques. IEEE T. Inf. Technol. Biomed. 5(1):46-54, 2001. (Pubitemid 32302932)
    • (2001) IEEE Transactions on Information Technology in Biomedicine , vol.5 , Issue.1 , pp. 46-54
    • Verma, B.1    Zakos, J.2
  • 18
    • 54949158747 scopus 로고    scopus 로고
    • Computer-based identification of breast cancer sing digitized mammograms
    • Acharya, U. R., Ng, E. Y. K., Chang, Y. H., Yang, J., and Kaw, G. J. L., Computer-based identification of breast cancer sing digitized mammograms. J. Med. Syst. 32(6):499-507, 2008.
    • (2008) J. Med. Syst. , vol.32 , Issue.6 , pp. 499-507
    • Acharya, U.R.1    Ng, E.Y.K.2    Chang, Y.H.3    Yang, J.4    Kaw, G.J.L.5
  • 19
    • 17844381877 scopus 로고    scopus 로고
    • Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural
    • Rafayah, M., Qutaishat, M., and Abdallah, M., Breast cancer diagnosis system based on wavelet analysis and fuzzy-neural. Expert. Syst. Appl. 28(4):713-723, 2005.
    • (2005) Expert. Syst. Appl. , vol.28 , Issue.4 , pp. 713-723
    • Rafayah, M.1    Qutaishat, M.2    Abdallah, M.3
  • 20
    • 37649001780 scopus 로고    scopus 로고
    • Neural networks for the classification of benign and malignant patterns in digital mammograms
    • Fulcher, J. (Ed.), Idea Group, USA
    • Verma, B., and Panchal, R., Neural networks for the classification of benign and malignant patterns in digital mammograms. In: Fulcher, J. (Ed.), Advances in applied artificial intelligence. Idea Group, USA, 2006.
    • (2006) Advances in Applied Artificial Intelligence
    • Verma, B.1    Panchal, R.2
  • 21
    • 37649010087 scopus 로고    scopus 로고
    • Novel network architecture and learning algorithm for the classification of mass abnormalities in digitized mammograms
    • Brijesh, B., Novel network architecture and learning algorithm for the classification of mass abnormalities in digitized mammograms. Artif. Intell. Med. 42(1):67-79, 2008.
    • (2008) Artif. Intell. Med. , vol.42 , Issue.1 , pp. 67-79
    • Brijesh, B.1
  • 22
    • 35048820122 scopus 로고    scopus 로고
    • Combination of SVM knowledge for microcalcification detection in digital mammograms
    • Li, Y., and Jiang, J., Combination of SVM knowledge for microcalcification detection in digital mammograms. Lect. Notes Comput. Sci. 3177:359-365, 2004.
    • (2004) Lect. Notes Comput. Sci. , vol.3177 , pp. 359-365
    • Li, Y.1    Jiang, J.2
  • 24
    • 33644686999 scopus 로고    scopus 로고
    • Optimization-based feature selection with adaptive instance sampling
    • DOI 10.1016/j.cor.2005.01.021, PII S0305054805000225, Operations Research and Data Mining
    • Yang, J., and Olafsson, S., Optimization-based feature selection with adaptive instance sampling. Comput. Oper. Res. 33 (11):3088-3106, 2006. (Pubitemid 43333215)
    • (2006) Computers and Operations Research , vol.33 , Issue.11 , pp. 3088-3106
    • Yang, J.1    Olafsson, S.2
  • 27
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R. E., The strength of weak learnability. Mach. Learn. 5 (2):197-227, 1990.
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 30
    • 26944458835 scopus 로고    scopus 로고
    • A data preprocessing method to increase efficiency and accuracy in data mining
    • Miksch, S., Hunter, J., Keravnou, E. (eds.), Springer-Verlag GmbH, Aberdeen
    • Razavi, A.R., Gill, H., Åhlfeldt, H., and Shahsavar, N.: A data preprocessing method to increase efficiency and accuracy in data mining. In: Miksch, S., Hunter, J., Keravnou, E. (eds.) 10th Conference on Artificial Intelligence in Medicine. Springer-Verlag GmbH, Aberdeen, pp. 434-443, 2005.
    • (2005) 10th Conference on Artificial Intelligence in Medicine , pp. 434-443
    • Razavi, A.R.1    Gill, H.2    Ahlfeldt, H.3    Shahsavar, N.4
  • 34
    • 10444259853 scopus 로고    scopus 로고
    • Creating diversity in ensembles using artificial data
    • Melville, P., and Monney, R. J., Creating diversity in ensembles using artificial data. Inf. Fusion. 6(1):99-111, 2005.
    • (2005) Inf. Fusion. , vol.6 , Issue.1 , pp. 99-111
    • Melville, P.1    Monney, R.J.2
  • 35
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R. E., Freund, Y., Bartlett, P. L., and Lee, W. S., Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist. 26(5):1651-1686, 1998. (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 36
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L., Random forests. Mach. Learn. 45(1):5-32, 2001. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 37
    • 0142025124 scopus 로고    scopus 로고
    • Constructing support vector machine ensemble
    • DOI 10.1016/S0031-3203(03)00175-4
    • Kim, H. C., Pang, S., Je, H. M., Kim, D., and Bang, S. Y., Constructing support vector machine ensemble. Pattern. Recognit. 36(12):2757-2767, 2003. (Pubitemid 37293392)
    • (2003) Pattern Recognition , vol.36 , Issue.12 , pp. 2757-2767
    • Kim, H.-C.1    Pang, S.2    Je, H.-M.3    Kim, D.4    Bang, S.Y.5
  • 38
    • 1942452226 scopus 로고    scopus 로고
    • Low bias bagged support vector machines
    • Fawcett, T., and Mishra, N. (Eds.), AAAI press, California
    • Valentini, G., and Dietterich, T. G., Low bias bagged support vector machines. In: Fawcett, T., and Mishra, N. (Eds.), International conference on machine learning. AAAI press, California, 2003.
    • (2003) International Conference on Machine Learning
    • Valentini, G.1    Dietterich, T.G.2
  • 39
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn. 24(2):123-140, 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 40
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Freund, Y., and Schapire, R. E., A decision-theoretic generalization of on-line learning and an application to Boosting. J. Comput. Syst. Sci. 55(1):119-139, 1997. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 41
    • 39049086240 scopus 로고    scopus 로고
    • An efficient modified Boosting method for solving classification problems
    • Zhang, C. X., Zhang, J. S., and Zhang, G. Y., An efficient modified Boosting method for solving classification problems. J. Comput. Appl. Math. 214(2):381-392, 2008.
    • (2008) J. Comput. Appl. Math. , vol.214 , Issue.2 , pp. 381-392
    • Zhang, C.X.1    Zhang, J.S.2    Zhang, G.Y.3
  • 42
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining Boosting and wagging
    • Webb, G. I., MultiBoosting: a technique for combining Boosting and wagging. Mach. Learn. 40(2):159-197, 2000.
    • (2000) Mach. Learn. , vol.40 , Issue.2 , pp. 159-197
    • Webb, G.I.1
  • 43
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • DOI 10.1016/j.artmed.2004.07.002, PII S0933365704001010
    • Delen, D., Walker, G., and Kadam, A., Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34:113-127, 2005. (Pubitemid 40719029)
    • (2005) Artificial Intelligence in Medicine , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1    Walker, G.2    Kadam, A.3
  • 44
    • 0025756235 scopus 로고
    • Signal detectability: The use of ROC curves and their analyses
    • Centor, R. M., Signal detectability: the use of ROC curves and their analyses. Med. Decis. Mak. 11:102-106, 1991.
    • (1991) Med. Decis. Mak. , vol.11 , pp. 102-106
    • Centor, R.M.1
  • 45
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J. A., and McNeil, B., The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 143(1):29-36, 1982. (Pubitemid 12142173)
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 46
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L., Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 44:837-845, 1988.
    • (1988) Biometrics. , vol.44 , pp. 837-845
    • Delong, E.R.1    Delong, D.M.2    Clarke-Pearson, D.L.3
  • 47
    • 33745834241 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Newmann, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning database. http://archive.ics.uci.edu/ml/datasets/ Mammographic+Mass, Irvine, CA: University of California, Department of Information and Computer Science, (1998)
    • (1998) UCI Repository of Machine Learning Database
    • Newmann, D.J.1    Hettich, S.2    Blake, C.L.3    Merz, C.J.4
  • 49
    • 35648972713 scopus 로고    scopus 로고
    • The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process
    • DOI 10.1118/1.2786864
    • Elter, M., Wendtland, R. S., and Wittenberg, T., The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process. Med. Phys. 34 (11):4164-4172, 2007. (Pubitemid 350029638)
    • (2007) Medical Physics , vol.34 , Issue.11 , pp. 4164-4172
    • Elter, M.1    Schulz-Wendtland, R.2    Wittenberg, T.3
  • 51
    • 4344713313 scopus 로고    scopus 로고
    • Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers
    • DOI 10.1167/iovs.04-0202
    • Zangwill, L. M., Chan, K., Bowd, C., Hao, J., Lee, T. W., Weinreb, R. N., et al., Heidelberg retina tomograph measurements of the optic disc and parapapillary retina for detecting glaucoma analyzed by machine learning classifiers. Invest. Ophthalmol. Vis. Sci. 45(3):3144-3151, 2004. (Pubitemid 39121848)
    • (2004) Investigative Ophthalmology and Visual Science , vol.45 , Issue.9 , pp. 3144-3151
    • Zangwill, L.M.1    Chan, K.2    Bowd, C.3    Hao, J.4    Lee, T.-W.5    Weinreb, R.N.6    Sejnowski, T.J.7    Goldbaum, M.H.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.