-
1
-
-
0037832748
-
Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve sysmplecticity
-
Bridges, T. J., Reich, S.: Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve sysmplecticity. Phys. Lett. A 284, 184-193 (2001).
-
(2001)
Phys. Lett. A
, vol.284
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
2
-
-
33646271105
-
Numerical methods for Hamiltonian PDEs
-
Bridges, T. J., Reich, S.: Numerical methods for Hamiltonian PDEs. J. Phys. A Math. Gen. 39, 5287-5320 (2006).
-
(2006)
J. Phys. A Math. Gen
, vol.39
, pp. 5287-5320
-
-
Bridges, T.J.1
Reich, S.2
-
3
-
-
33645522650
-
Conserved quantities of some Hamiltonian wave equations after full discretization
-
Cano, B.: Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103, 197-223 (2006).
-
(2006)
Numer. Math
, vol.103
, pp. 197-223
-
-
Cano, B.1
-
4
-
-
0003321806
-
The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods
-
Springer, Berlin
-
Hairer, E., Lubich, C., ROCHE, M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989).
-
(1989)
Lecture Notes in Mathematics
, vol.1409
-
-
Hairer, E.1
Lubich, C.2
Roche, M.3
-
5
-
-
1642495077
-
Geometric Numerical Integration
-
Springer, Berlin
-
Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-PreservingAlgorithms for Ordinary Differential Equations. Springer, Berlin (2002).
-
(2002)
Structure-PreservingAlgorithms for Ordinary Differential Equations
-
-
Hairer, E.1
Lubich, C.2
Wanner, G.3
-
6
-
-
26944495302
-
Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations
-
Hong, J., Li, C.: Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211, 448-472 (2006).
-
(2006)
J. Comput. Phys
, vol.211
, pp. 448-472
-
-
Hong, J.1
Li, C.2
-
7
-
-
85009774577
-
The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
-
Hong, J., Liu, H., Sun, G.: The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. Math. Comput. 75, 167-181 (2006).
-
(2006)
Math. Comput
, vol.75
, pp. 167-181
-
-
Hong, J.1
Liu, H.2
Sun, G.3
-
8
-
-
33645984826
-
Global conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients
-
Hong, J., Liu, Y., Munthe-Kaas, H., Zanna, A.: Global conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. Appl. Numer. Math. 56, 814-843 (2006).
-
(2006)
Appl. Numer. Math
, vol.56
, pp. 814-843
-
-
Hong, J.1
Liu, Y.2
Munthe-Kaas, H.3
Zanna, A.4
-
9
-
-
34249890092
-
A survey of multi-symplectic Runge-Kutta type methods for Hamiltonian partial differential equations
-
In: Li, T., Zhang, P. (eds.) World Scientific and Higher Education Press, Singapore
-
Hong, J.: A survey of multi-symplectic Runge-Kutta type methods for Hamiltonian partial differential equations. In: Li, T., Zhang, P. (eds.) Frontiers and Prospects of Contemporary Applied Mathematics. Series in Contemporary Applied Mathematics, vol. CAM 6, pp. 71-113. World Scientific and Higher Education Press, Singapore (2005).
-
(2005)
Frontiers and Prospects of Contemporary Applied Mathematics. Series in Contemporary Applied Mathematics
, pp. 71-113
-
-
Hong, J.1
-
12
-
-
0035841060
-
Geometric integrators for the nonlinear Schrödinger equation
-
Islas, A. L., Karpeev, D. A., Schober, C. M.: Geometric integrators for the nonlinear Schrödinger equation. J. Comput. Phys. 173, 116-148 (2001).
-
(2001)
J. Comput. Phys
, vol.173
, pp. 116-148
-
-
Islas, A.L.1
Karpeev, D.A.2
Schober, C.M.3
-
13
-
-
3242702916
-
On the preservation of phase space structure under multisymplectic discretization
-
Islas, A. L., Schober, C. M.: On the preservation of phase space structure under multisymplectic discretization. J. Comput. Phys. 197, 585-609 (2004).
-
(2004)
J. Comput. Phys
, vol.197
, pp. 585-609
-
-
Islas, A.L.1
Schober, C.M.2
-
15
-
-
0037400145
-
Multisymplectic integration methods for Hamiltonian PDEs
-
Moore, B., Reich, S.: Multisymplectic integration methods for Hamiltonian PDEs. Future Gener. Comput. Syst. 19, 395-402 (2003).
-
(2003)
Future Gener. Comput. Syst
, vol.19
, pp. 395-402
-
-
Moore, B.1
Reich, S.2
-
16
-
-
0242339583
-
Backward error analysis for multi-symplectic integrationmethods
-
Moore, B., Reich, S.: Backward error analysis for multi-symplectic integrationmethods. Numer. Math. 95, 625-652 (2003).
-
(2003)
Numer. Math
, vol.95
, pp. 625-652
-
-
Moore, B.1
Reich, S.2
-
17
-
-
2942627242
-
Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations
-
Oliver, M., West, M., Wulff, C.: Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97, 493-535 (2004).
-
(2004)
Numer. Math
, vol.97
, pp. 493-535
-
-
Oliver, M.1
West, M.2
Wulff, C.3
-
18
-
-
0034687898
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
-
Reich, S.: Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473-499 (2000).
-
(2000)
J. Comput. Phys
, vol.157
, pp. 473-499
-
-
Reich, S.1
|