메뉴 건너뛰기




Volumn 112, Issue 1, 2009, Pages 1-23

Accuracy of classical conservation laws for Hamiltonian PDEs under Runge-Kutta discretizations

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84894226169     PISSN: 0029599X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00211-008-0204-4     Document Type: Article
Times cited : (3)

References (19)
  • 1
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic integrators: Numerical schemes for Hamiltonian PDEs that conserve sysmplecticity
    • Bridges, T. J., Reich, S.: Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve sysmplecticity. Phys. Lett. A 284, 184-193 (2001).
    • (2001) Phys. Lett. A , vol.284 , pp. 184-193
    • Bridges, T.J.1    Reich, S.2
  • 2
    • 33646271105 scopus 로고    scopus 로고
    • Numerical methods for Hamiltonian PDEs
    • Bridges, T. J., Reich, S.: Numerical methods for Hamiltonian PDEs. J. Phys. A Math. Gen. 39, 5287-5320 (2006).
    • (2006) J. Phys. A Math. Gen , vol.39 , pp. 5287-5320
    • Bridges, T.J.1    Reich, S.2
  • 3
    • 33645522650 scopus 로고    scopus 로고
    • Conserved quantities of some Hamiltonian wave equations after full discretization
    • Cano, B.: Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103, 197-223 (2006).
    • (2006) Numer. Math , vol.103 , pp. 197-223
    • Cano, B.1
  • 4
    • 0003321806 scopus 로고
    • The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods
    • Springer, Berlin
    • Hairer, E., Lubich, C., ROCHE, M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989).
    • (1989) Lecture Notes in Mathematics , vol.1409
    • Hairer, E.1    Lubich, C.2    Roche, M.3
  • 6
    • 26944495302 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations
    • Hong, J., Li, C.: Multi-symplectic Runge-Kutta methods for nonlinear Dirac equations. J. Comput. Phys. 211, 448-472 (2006).
    • (2006) J. Comput. Phys , vol.211 , pp. 448-472
    • Hong, J.1    Li, C.2
  • 7
    • 85009774577 scopus 로고    scopus 로고
    • The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs
    • Hong, J., Liu, H., Sun, G.: The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs. Math. Comput. 75, 167-181 (2006).
    • (2006) Math. Comput , vol.75 , pp. 167-181
    • Hong, J.1    Liu, H.2    Sun, G.3
  • 8
    • 33645984826 scopus 로고    scopus 로고
    • Global conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients
    • Hong, J., Liu, Y., Munthe-Kaas, H., Zanna, A.: Global conservative properties and error estimation of a multi-symplectic scheme for Schrödinger equations with variable coefficients. Appl. Numer. Math. 56, 814-843 (2006).
    • (2006) Appl. Numer. Math , vol.56 , pp. 814-843
    • Hong, J.1    Liu, Y.2    Munthe-Kaas, H.3    Zanna, A.4
  • 9
    • 34249890092 scopus 로고    scopus 로고
    • A survey of multi-symplectic Runge-Kutta type methods for Hamiltonian partial differential equations
    • In: Li, T., Zhang, P. (eds.) World Scientific and Higher Education Press, Singapore
    • Hong, J.: A survey of multi-symplectic Runge-Kutta type methods for Hamiltonian partial differential equations. In: Li, T., Zhang, P. (eds.) Frontiers and Prospects of Contemporary Applied Mathematics. Series in Contemporary Applied Mathematics, vol. CAM 6, pp. 71-113. World Scientific and Higher Education Press, Singapore (2005).
    • (2005) Frontiers and Prospects of Contemporary Applied Mathematics. Series in Contemporary Applied Mathematics , pp. 71-113
    • Hong, J.1
  • 12
    • 0035841060 scopus 로고    scopus 로고
    • Geometric integrators for the nonlinear Schrödinger equation
    • Islas, A. L., Karpeev, D. A., Schober, C. M.: Geometric integrators for the nonlinear Schrödinger equation. J. Comput. Phys. 173, 116-148 (2001).
    • (2001) J. Comput. Phys , vol.173 , pp. 116-148
    • Islas, A.L.1    Karpeev, D.A.2    Schober, C.M.3
  • 13
    • 3242702916 scopus 로고    scopus 로고
    • On the preservation of phase space structure under multisymplectic discretization
    • Islas, A. L., Schober, C. M.: On the preservation of phase space structure under multisymplectic discretization. J. Comput. Phys. 197, 585-609 (2004).
    • (2004) J. Comput. Phys , vol.197 , pp. 585-609
    • Islas, A.L.1    Schober, C.M.2
  • 15
    • 0037400145 scopus 로고    scopus 로고
    • Multisymplectic integration methods for Hamiltonian PDEs
    • Moore, B., Reich, S.: Multisymplectic integration methods for Hamiltonian PDEs. Future Gener. Comput. Syst. 19, 395-402 (2003).
    • (2003) Future Gener. Comput. Syst , vol.19 , pp. 395-402
    • Moore, B.1    Reich, S.2
  • 16
    • 0242339583 scopus 로고    scopus 로고
    • Backward error analysis for multi-symplectic integrationmethods
    • Moore, B., Reich, S.: Backward error analysis for multi-symplectic integrationmethods. Numer. Math. 95, 625-652 (2003).
    • (2003) Numer. Math , vol.95 , pp. 625-652
    • Moore, B.1    Reich, S.2
  • 17
    • 2942627242 scopus 로고    scopus 로고
    • Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations
    • Oliver, M., West, M., Wulff, C.: Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations. Numer. Math. 97, 493-535 (2004).
    • (2004) Numer. Math , vol.97 , pp. 493-535
    • Oliver, M.1    West, M.2    Wulff, C.3
  • 18
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
    • Reich, S.: Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations. J. Comput. Phys. 157, 473-499 (2000).
    • (2000) J. Comput. Phys , vol.157 , pp. 473-499
    • Reich, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.