메뉴 건너뛰기




Volumn 173, Issue 1, 2001, Pages 116-148

Geometric integrators for the nonlinear Schrödinger equation

Author keywords

Multisymplectic integrators; Nonlinear Schr dinger equation; Nonlinear wave equations; Symplectic integrators

Indexed keywords

PHYSICAL PROPERTIES; WAVE EQUATIONS;

EID: 0035841060     PISSN: 00219991     EISSN: None     Source Type: Journal    
DOI: 10.1006/jcph.2001.6854     Document Type: Article
Times cited : (84)

References (26)
  • 13
    • 0030295549 scopus 로고    scopus 로고
    • On numerical methods for Hamiltonian PDEs and a collocation method for the Vlasov-Maxwell equations
    • (1996) J. Comput. Phys , vol.129 , pp. 121
    • Holloway, J.P.1
  • 18
    • 0000194427 scopus 로고
    • On the numerical integration of ordinary differential equations by symmetric composition methods
    • (1995) SIAM J. Sci. Comput , vol.16 , pp. 151
    • McLachlan, R.1
  • 21
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
    • (2000) J. Comput. Phys , vol.157 , pp. 473
    • Reich, S.1
  • 23
    • 0000264271 scopus 로고    scopus 로고
    • Symplectic integrators for the Ablowitz-Ladik discrete nonlinear Schrödinger equation
    • (1999) Phys. Lett. A , vol.259 , pp. 140
    • Schober, C.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.