-
1
-
-
0003570995
-
The Numerical Analysis of Ordinary Differential Equations
-
John Wiley & Sons, Chichester, MR0878564 (88d:65002)
-
J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations. Runge-Kutta and General Linear Methods, John Wiley & Sons, Chichester, 1987. MR0878564 (88d:65002)
-
(1987)
Runge-Kutta and General Linear Methods
-
-
Butcher, J.C.1
-
2
-
-
0037832748
-
Multi-symplectic integrator: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
MR1854689 (2002g:65166)
-
Th. J. Bridges and S. Reich, Multi-symplectic integrator: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Physics Letters A, 284(4-5) (2001), 184-193. MR1854689 (2002g:65166)
-
(2001)
Physics Letters A
, vol.284
, Issue.4-5
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
3
-
-
0002211850
-
Stability of Runge-Kutta methods for trajectory problems
-
MR0967831 (90d:65133)
-
G.J. Cooper, Stability of Runge-Kutta methods for trajectory problems, IMA J. Numer. Anal., 7 (1987), 1-13. MR0967831 (90d:65133)
-
(1987)
IMA J. Numer. Anal.
, vol.7
, pp. 1-13
-
-
Cooper, G.J.1
-
4
-
-
0001686631
-
Symplectic finite difference approximations of the nonlinear Klein-Gordon equation
-
MR1472194 (98m:65139)
-
D.B. Duncan, Symplectic finite difference approximations of the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal., 34 (1997), 1742-1760. MR1472194 (98m:65139)
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 1742-1760
-
-
Duncan, D.B.1
-
5
-
-
0039657874
-
Split-step spectral schemes for nonlinear Dirac systems
-
MR1013060 (91f:81021)
-
J. de Frutos & J.M. Sanz-Serna, Split-step spectral schemes for nonlinear Dirac systems, J. Comput. Phys., 83 (1989), 407-423. MR1013060 (91f:81021)
-
(1989)
J. Comput. Phys.
, vol.83
, pp. 407-423
-
-
De Frutos, J.1
Sanz-Serna, J.M.2
-
6
-
-
0011813790
-
Hamiltonian systems and symplectic integrators
-
MR1490098 (98j:65049)
-
P. Görtz and R. Scherer, Hamiltonian systems and symplectic integrators, Nonlinear Analysis TMA, 30 (1997), 1887-1892. MR1490098 (98j:65049)
-
(1997)
Nonlinear Analysis TMA
, vol.30
, pp. 1887-1892
-
-
Görtz, P.1
Scherer, R.2
-
8
-
-
84959193128
-
Discrete mechanics and variational integrators
-
MR2009697 (2004h:37130)
-
J.E. Marsden & M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 1-158. MR2009697 (2004h:37130)
-
(2001)
Acta Numerica
, vol.10
, pp. 1-158
-
-
Marsden, J.E.1
West, M.2
-
9
-
-
0034687898
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
-
MR1739109 (2001a:65087)
-
S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000) 2, 473-499. MR1739109 (2001a:65087)
-
(2000)
J. Comput. Phys
, vol.157
, Issue.2
, pp. 473-499
-
-
Reich, S.1
-
10
-
-
0038976122
-
Runge-Kutta schemes for Hamiltonian systems
-
MR0972812 (90b:65145)
-
J.M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT, 28 (1988), 877-883. MR0972812 (90b:65145)
-
(1988)
BIT
, vol.28
, pp. 877-883
-
-
Sanz-Serna, J.M.1
-
11
-
-
0040419824
-
The numerical integration of Hamiltonian systems
-
by J.R. Cash & I.Gladwell, Clarendon Press, Oxford, MR1387155
-
J.M. Sanz-Serna, The numerical integration of Hamiltonian systems. In: Computational Ordinary Differential Equations, ed. by J.R. Cash & I.Gladwell, Clarendon Press, Oxford, (1992) 437-449. MR1387155
-
(1992)
Computational Ordinary Differential Equations
, pp. 437-449
-
-
Sanz-Serna, J.M.1
-
13
-
-
33144468570
-
A simple way of constructing symplectic Runge-Kutta methods
-
MR1741173 (2000j:37118)
-
G. Sun, A simple way of constructing symplectic Runge-Kutta methods, J. Comput. Math., 18 (2000), 61-68. MR1741173 (2000j:37118)
-
(2000)
J. Comput. Math.
, vol.18
, pp. 61-68
-
-
Sun, G.1
-
14
-
-
0001433845
-
Symplectic partitioned Runge-Kutta methods
-
MR1252773 (95a:65113)
-
G. Sun, Symplectic partitioned Runge-Kutta methods, J. Comput. Math., 11 (1993), 365-372. MR1252773 (95a:65113)
-
(1993)
J. Comput. Math.
, vol.11
, pp. 365-372
-
-
Sun, G.1
-
15
-
-
0042475779
-
On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems (In Russian)
-
S.S. Filippov, Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow
-
Y.B. Suris, On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems (in Russian), In: Numerical Solution of Ordinary Differential Equations, ed. S.S. Filippov, Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow, 1988, 148-160.
-
(1988)
Numerical Solution of Ordinary Differential Equations
, pp. 148-160
-
-
Suris, Y.B.1
-
16
-
-
0041473970
-
Hamiltonian methods of Runge-Kutta type and their variational interpolation (In Russian)
-
MR1064467 (92b:65051)
-
Y.B. Suris, Hamiltonian methods of Runge-Kutta type and their variational interpolation (in Russian), Math. Model., 2 (1990), 78-87. MR1064467 (92b:65051)
-
(1990)
Math. Model.
, vol.2
, pp. 78-87
-
-
Suris, Y.B.1
|