-
1
-
-
24644472743
-
Linear Crank-Nicholsen scheme for nonlinear Dirac equations
-
A. Alvarez, Linear Crank-Nicholsen scheme for nonlinear Dirac equations, J. Comput. Phys. 99 (1992) 348-350.
-
(1992)
J. Comput. Phys.
, vol.99
, pp. 348-350
-
-
Alvarez, A.1
-
2
-
-
0008447599
-
Interaction dynamics for the solitary waves of a nonlinear Dirac model
-
A. Alvarez and B. Carreras, Interaction dynamics for the solitary waves of a nonlinear Dirac model, Phys. Lett. 86A (1981) 327-332.
-
(1981)
Phys. Lett
, vol.86A
, pp. 327-332
-
-
Alvarez, A.1
Carreras, B.2
-
3
-
-
0348059253
-
The numerical study of a nonliear one-dimensional Dirac equation
-
A. Alvarez, P. Kuo and L. Vazquez, The numerical study of a nonliear one-dimensional Dirac equation, Appl. Math. Comput. 13 (1983) 1-15.
-
(1983)
Appl. Math. Comput.
, vol.13
, pp. 1-15
-
-
Alvarez, A.1
Kuo, P.2
Vazquez, L.3
-
4
-
-
1042304391
-
Multisymplectic box schemes and the Korteweg-de Vries equation
-
U. Ascher and R. McLachlan, Multisymplectic box schemes and the Korteweg-de Vries equation, Appl. Numer. Math. 48 (2004) 2550-269.
-
(2004)
Appl. Numer. Math.
, vol.48
, pp. 2550-2269
-
-
Ascher, U.1
McLachlan, R.2
-
6
-
-
0042137401
-
Muti-symplectic structures and wave propagation
-
T. J. Bridges, Muti-symplectic structures and wave propagation, Math. Proc. Camb. Phil. Soc. 121 (1997), 147-190.
-
(1997)
Math. Proc. Camb. Phil. Soc.
, vol.121
, pp. 147-190
-
-
Bridges, T.J.1
-
7
-
-
0037832748
-
Multi-symplectic integrator: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
-
T. J. Bridges and S. Reich, Multi-symplectic integrator: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Physics Letters A 284 (2001) 184-193.
-
(2001)
Physics Letters A
, vol.284
, pp. 184-193
-
-
Bridges, T.J.1
Reich, S.2
-
8
-
-
0035892442
-
New schemes for the nonlinear Schrodinger equation
-
J. Chen, New schemes for the nonlinear Schrodinger equation, Appl. Math. Comput. 124 (2001) 371-379.
-
(2001)
Appl. Math. Comput.
, vol.124
, pp. 371-379
-
-
Chen, J.1
-
9
-
-
0002211850
-
Stability of Runge-Kutta methods for trajectory problems
-
G. J. Cooper, Stability of Runge-Kutta methods for trajectory problems, IMA J. Numer. Anal. 7 (1987) 1-13.
-
(1987)
IMA J. Numer. Anal.
, vol.7
, pp. 1-13
-
-
Cooper, G.J.1
-
10
-
-
0001686631
-
Symplectic finite difference approximations of the nonlinear Klein-Gordon equation
-
D. B. Duncan, Symplectic finite difference approximations of the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal. 34 (1997) 1742-1760.
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 1742-1760
-
-
Duncan, D.B.1
-
13
-
-
0039657874
-
Split-step spectral schemes for nonlinear Dirac systems
-
J. de Frutos & J. M. Sanz-Serna, Split-step spectral schemes for nonlinear Dirac systems, J. Comp. Phys. 83 (1989) 407-423.
-
(1989)
J. Comp. Phys.
, vol.83
, pp. 407-423
-
-
de Frutos, J.1
Sanz-Serna, J.M.2
-
15
-
-
3543095217
-
Multisymplecticity of the central box scheme for a class of Hamiltonian PDEs and an application to quasi-periodic solitary waves
-
J. Hong and Y. Liu, Multisymplecticity of the central box scheme for a class of Hamiltonian PDEs and an application to quasi-periodic solitary waves, Math. Comput. Modelling. 39 (2004) 1035-1047.
-
(2004)
Math. Comput. Modelling.
, vol.39
, pp. 1035-1047
-
-
Hong, J.1
Liu, Y.2
-
17
-
-
84867955067
-
A novel numerical approach to simulating nonlinear Schrodinger equation with varying coefficients
-
J. Hong and Y. Liu, A novel numerical approach to simulating nonlinear Schrodinger equation with varying coefficients, Appl. Math. Lett. 16(5) (2003), 759-765.
-
(2003)
Appl. Math. Lett.
, vol.16
, Issue.5
, pp. 759-765
-
-
Hong, J.1
Liu, Y.2
-
21
-
-
31244436460
-
Multi-symplecticity of the centred box discretization for Hamiltonian PDEs with m > 2 space dimensions
-
J. Hong and M. Qin, Multi-symplecticity of the centred box discretization for Hamiltonian PDEs with m > 2 space dimensions, Appl. Math. Lett. 15 (2002) 1005-1011.
-
(2002)
Appl. Math. Lett.
, vol.15
, pp. 1005-1011
-
-
Hong, J.1
Qin, M.2
-
23
-
-
0035841060
-
Geometric integrators for the nonlinear Schrodinger equation
-
A.L. Islas, D. A. Karpeev and C.M. Schober, Geometric integrators for the nonlinear Schrodinger equation, J. Comput. Phys. 173 (2001) 116-148.
-
(2001)
J. Comput. Phys.
, vol.173
, pp. 116-148
-
-
Islas, A.L.1
Karpeev, D.A.2
Schober, C.M.3
-
24
-
-
3242702916
-
On the preservation of phase space structure under multisymplectic discretization
-
A. L. Islas and C. M. Schober, On the preservation of phase space structure under multisymplectic discretization, J. Comput. Phys. 197 (2004) 585-609.
-
(2004)
J. Comput. Phys.
, vol.197
, pp. 585-609
-
-
Islas, A.L.1
Schober, C.M.2
-
25
-
-
0011615763
-
Canonical Runge-Kutta methods
-
F. M. Lasagni, Canonical Runge-Kutta methods, ZAMP 39 (1988) 952-953.
-
(1988)
ZAMP
, vol.39
, pp. 952-953
-
-
Lasagni, F.M.1
-
26
-
-
84959193128
-
Discrete mechanics and variational integrators
-
J. E. Marsden & M. West, Discrete mechanics and variational integrators, Acta Numerica 10 (2001) 1-158.
-
(2001)
Acta Numerica
, vol.10
, pp. 1-158
-
-
Marsden, J.E.1
West, M.2
-
27
-
-
0000140852
-
Variational methods
-
J. E. Marsden, S. Pekarsky, S. Shkoller and M. West, Variational methods, multi-symplectic geometry and continuum mechanics, J. Geom. and Phys. 38 (2001) 253-284.
-
(2001)
multi-symplectic geometry and continuum mechanics, J. Geom. and Phys.
, vol.38
, pp. 253-284
-
-
Marsden, J.E.1
Pekarsky, S.2
Shkoller, S.3
West, M.4
-
28
-
-
34249766017
-
Symplectic integration of Hamiltonian wave equations
-
R. I. McLachlan, Symplectic integration of Hamiltonian wave equations, Numer. Math. 66 (1994) 465-492.
-
(1994)
Numer. Math.
, vol.66
, pp. 465-492
-
-
McLachlan, R.I.1
-
29
-
-
0037400145
-
Multi-symplectic integration methods for Hamiltonian PDEs
-
B. Moore and S. Reich, Multi-symplectic integration methods for Hamiltonian PDEs, Future Gener. Comput. Syst. 19 (2003) 395-402.
-
(2003)
Future Gener. Comput. Syst.
, vol.19
, pp. 395-402
-
-
Moore, B.1
Reich, S.2
-
30
-
-
0242339583
-
Backward error analysis for multi-symplectic integration methods
-
B. Moore and S. Reich, Backward error analysis for multi-symplectic integration methods, Numer. Math. 95 (2003) 625-652.
-
(2003)
Numer. Math.
, vol.95
, pp. 625-652
-
-
Moore, B.1
Reich, S.2
-
31
-
-
0034687898
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations
-
S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comp. Phys. 157 (2000) 2, 473-499.
-
(2000)
J. Comp. Phys.
, vol.157
, Issue.2
, pp. 473-499
-
-
Reich, S.1
-
32
-
-
0038976122
-
Runge-Kutta schemes for Hamiltonian systems
-
J. M. Sanz-Serna, Runge-Kutta schemes for Hamiltonian systems, BIT 28 (1988) 877-883.
-
(1988)
BIT
, vol.28
, pp. 877-883
-
-
Sanz-Serna, J.M.1
-
33
-
-
0040419824
-
The numerical integration of Hamiltonian systems
-
ed. by J.R. Cash & I. Gladwell, Clarendon Press, Oxford
-
J. M. Sanz-Serna, The numerical integration of Hamiltonian systems, In: Computational Ordinary Differential Equations, ed. by J.R. Cash & I. Gladwell, Clarendon Press, Oxford, 1992, 437-449.
-
(1992)
In: Computational Ordinary Differential Equations
, pp. 437-449
-
-
Sanz-Serna, J.M.1
-
35
-
-
33144468570
-
A simple way of constructing symplectic Runge-Kutta methods
-
G. Sun, A simple way of constructing symplectic Runge-Kutta methods, J. Comput. Math. 18 (2000) 61-68.
-
(2000)
J. Comput. Math.
, vol.18
, pp. 61-68
-
-
Sun, G.1
-
36
-
-
0001433845
-
Symplectic partitioned Runge-Kutta methods
-
G. Sun, Symplectic partitioned Runge-Kutta methods, J. Comput. Math. 11 (1993) 365-372.
-
(1993)
J. Comput. Math.
, vol.11
, pp. 365-372
-
-
Sun, G.1
-
37
-
-
0034311551
-
Construction of multi-symplectic schemes of any finite order for modified wave equation
-
Y. Sun and M. Qin, Construction of multi-symplectic schemes of any finite order for modified wave equation, J. Math. Phys. 41 (2000) 7854-7868.
-
(2000)
J. Math. Phys.
, vol.41
, pp. 7854-7868
-
-
Sun, Y.1
Qin, M.2
-
38
-
-
0042475779
-
On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems (in Russian)
-
In, ed. by S.S. Filippov, Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow
-
Y. B. Suris, On the conservation of the symplectic structure in the numerical solution of Hamiltonian systems (in Russian), In: Numerical Solution of Ordinary Differential Equations, ed. by S.S. Filippov, Keldysh Institute of Applied Mathematics, USSR Academy of Sciences, Moscow, 1988, 148-160.
-
(1988)
Numerical Solution of Ordinary Differential Equations
, pp. 148-160
-
-
Suris, Y.B.1
-
39
-
-
0041473970
-
Hamiltonian methods of Runge-Kutta type and their variational interpolation (in Russian)
-
Y. B. Suris, Hamiltonian methods of Runge-Kutta type and their variational interpolation (in Russian), Math. Model. 2 (1990) 78-87.
-
(1990)
Math. Model.
, vol.2
, pp. 78-87
-
-
Suris, Y.B.1
-
40
-
-
0348170697
-
Numerical implementation of the multi-symplectic Preissmann scheme and its equivalent schemes
-
Y. Wang, B. Wang and M. Qin, Numerical implementation of the multi-symplectic Preissmann scheme and its equivalent schemes, Appl. Math. Comput. 149 (2004) 299-326.
-
(2004)
Appl. Math. Comput.
, vol.149
, pp. 299-326
-
-
Wang, Y.1
Wang, B.2
Qin, M.3
-
41
-
-
0034640067
-
Multi-symplectic geometry and multi-symplectic Preissmann Scheme for the KdV equation
-
P. Zhao and M. Qin, Multi-symplectic geometry and multi-symplectic Preissmann Scheme for the KdV equation, J. Phy. A: Math. Gen. 33 (2000) 3613-3626.
-
(2000)
J. Phy. A: Math. Gen.
, vol.33
, pp. 3613-3626
-
-
Zhao, P.1
Qin, M.2
|