메뉴 건너뛰기




Volumn 24, Issue 2, 2014, Pages 137-154

Variable selection for generalized linear mixed models by L1-penalized estimation

Author keywords

Generalized linear mixed model; Gradient ascent; Lasso; Linear models; Penalty; Variable selection

Indexed keywords


EID: 84893918594     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-012-9359-z     Document Type: Article
Times cited : (178)

References (75)
  • 1
    • 0000501656 scopus 로고
    • Information theory and the extension of the maximum likelihood principle
    • Akaike, H.: Information theory and the extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, pp. 267-281 (1973).
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 3
    • 78650073483 scopus 로고    scopus 로고
    • Joint variable selection of fixed and random effects in linear mixed-effects models
    • Bondell, H. D., Krishna, A., Ghosh, S. K.: Joint variable selection of fixed and random effects in linear mixed-effects models. Biometrics 66, 1069-1077 (2010).
    • (2010) Biometrics , vol.66 , pp. 1069-1077
    • Bondell, H.D.1    Krishna, A.2    Ghosh, S.K.3
  • 4
    • 77955981313 scopus 로고    scopus 로고
    • Bootstrap methods for generalized mixed models with applications to small area estimation
    • G. U. H. Seeber, B. J. Francis, R. Hatzinger, and G. Steckel-Berger (Eds.), New York: Springer
    • Booth, J. G.: Bootstrap methods for generalized mixed models with applications to small area estimation. In: Seeber, G. U. H., Francis, B. J., Hatzinger, R., Steckel-Berger, G. (eds.) Statistical Modelling, vol. 104, pp. 43-51. Springer, New York (1996).
    • (1996) Statistical Modelling , vol.104 , pp. 43-51
    • Booth, J.G.1
  • 5
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • Booth, J. G., Hobert, J. P.: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. R. Stat. Soc. B 61, 265-285 (1999).
    • (1999) J. R. Stat. Soc. B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 6
    • 0030344230 scopus 로고    scopus 로고
    • Heuristics of instability and stabilization in model selection
    • Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 6, 2350-2383 (1996).
    • (1996) Ann. Stat. , vol.6 , pp. 2350-2383
    • Breiman, L.1
  • 7
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman, L.: Arcing classifiers. Ann. Stat. 26, 801-849 (1998).
    • (1998) Ann. Stat. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 8
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed model
    • Breslow, N. E., Clayton, D. G.: Approximate inference in generalized linear mixed model. J. Am. Stat. Assoc. 88, 9-25 (1993).
    • (1993) J. Am. Stat. Assoc. , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 9
    • 0003020981 scopus 로고
    • Bias correction in generalized linear mixed models with a single component of dispersion
    • Breslow, N. E., Lin, X.: Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika 82, 81-91 (1995).
    • (1995) Biometrika , vol.82 , pp. 81-91
    • Breslow, N.E.1    Lin, X.2
  • 11
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: regularization, prediction and model fitting
    • Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting. Stat. Sci. 22, 477-522 (2007).
    • (2007) Stat. Sci. , vol.22 , pp. 477-522
    • Bühlmann, P.1    Hothorn, T.2
  • 12
    • 0043245810 scopus 로고    scopus 로고
    • 2 loss: regression and classification
    • 2 loss: regression and classification. J. Am. Stat. Assoc. 98, 324-339 (2003).
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 13
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: statistical estimation when p is much larger than n
    • Candes, E., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35, 2313-2351 (2007).
    • (2007) Ann. Stat. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 17
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: improvement on crossvalidation
    • Efron, B.: Estimating the error rate of a prediction rule: improvement on crossvalidation. J. Am. Stat. Assoc. 78, 316-331 (1983).
    • (1983) J. Am. Stat. Assoc. , vol.78 , pp. 316-331
    • Efron, B.1
  • 18
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • Efron, B.: How biased is the apparent error rate of a prediction rule? J. Am. Stat. Assoc. 81, 461-470 (1986).
    • (1986) J. Am. Stat. Assoc. , vol.81 , pp. 461-470
    • Efron, B.1
  • 21
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian inference for generalized additive mixed models based on Markov random field priors
    • doi:10.1111/1467-9876.00229
    • Fahrmeir, L., Lang, S.: Bayesian inference for generalized additive mixed models based on Markov random field priors. Appl. Stat. 50, 201-220 (2001). doi: 10. 1111/1467-9876. 00229.
    • (2001) Appl. Stat. , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 23
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalize likelihood and its oracle properties
    • Fan, J., Li, R.: Variable selection via nonconcave penalize likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348-1360 (2001).
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 25
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman, J. H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 337-407 (2001).
    • (2001) Ann. Stat. , vol.29 , pp. 337-407
    • Friedman, J.H.1
  • 26
    • 84950645271 scopus 로고
    • The predictive sample reuse method with applications
    • Geissler, S.: The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70, 320-328 (1975).
    • (1975) J. Am. Stat. Assoc. , vol.70 , pp. 320-328
    • Geissler, S.1
  • 27
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • Genkin, A., Lewis, D., Madigan, D.: Large-scale Bayesian logistic regression for text categorization. Technometrics 49, 291-304 (2007).
    • (2007) Technometrics , vol.49 , pp. 291-304
    • Genkin, A.1    Lewis, D.2    Madigan, D.3
  • 28
    • 77952568988 scopus 로고    scopus 로고
    • 1 penalized estimation in the Cox proportional hazards model
    • 1 penalized estimation in the Cox proportional hazards model. Biom. J. 52, 70-84 (2010).
    • (2010) Biom. J. , vol.52 , pp. 70-84
    • Goeman, J.J.1
  • 31
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • Gui, J., Li, H. Z.: Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21, 3001-3008 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 3001-3008
    • Gui, J.1    Li, H.Z.2
  • 32
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5, 1391-1415 (2004).
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 33
    • 79959368569 scopus 로고    scopus 로고
    • Fixed and random effects selection in mixed effects models
    • Ibrahim, J. G., Zhu, H., Garcia, R. I., Guo, R.: Fixed and random effects selection in mixed effects models. Biometrics 67, 495-503 (2011).
    • (2011) Biometrics , vol.67 , pp. 495-503
    • Ibrahim, J.G.1    Zhu, H.2    Garcia, R.I.3    Guo, R.4
  • 34
    • 66249085882 scopus 로고    scopus 로고
    • A generalized Dantzig selector with shrinkage tuning
    • James, G. M., Radchenko, P.: A generalized Dantzig selector with shrinkage tuning. Biometrika 96(2), 323-337 (2009).
    • (2009) Biometrika , vol.96 , Issue.2 , pp. 323-337
    • James, G.M.1    Radchenko, P.2
  • 35
    • 14344256001 scopus 로고    scopus 로고
    • Gradient lasso for feature selection
    • ACM International Conference Proceeding Series
    • Kim, Y., Kim, J.: Gradient lasso for feature selection. In: Proceedings of the 21st International Conference on Machine Learning. ACM International Conference Proceeding Series, vol. 69, pp. 473-480 (2004).
    • (2004) Proceedings of the 21st International Conference on Machine Learning , vol.69 , pp. 473-480
    • Kim, Y.1    Kim, J.2
  • 36
    • 66949120727 scopus 로고    scopus 로고
    • Variable selection and model choice in geoadditive regression
    • Kneib, T., Hothorn, T., Tutz, G.: Variable selection and model choice in geoadditive regression. Biometrics 65, 626-634 (2009).
    • (2009) Biometrics , vol.65 , pp. 626-634
    • Kneib, T.1    Hothorn, T.2    Tutz, G.3
  • 37
    • 0033561718 scopus 로고    scopus 로고
    • Assessing the godness-of-fit of the laird and ware model-an example: the Jimma infant survival differential longitudinal study
    • Lesaffre, E., Asefa, M., Verbeke, G.: Assessing the godness-of-fit of the laird and ware model-an example: the Jimma infant survival differential longitudinal study. Stat. Med. 18, 835-854 (1999).
    • (1999) Stat. Med. , vol.18 , pp. 835-854
    • Lesaffre, E.1    Asefa, M.2    Verbeke, G.3
  • 38
    • 0030336576 scopus 로고    scopus 로고
    • Bias correction in generalized linear mixed models with multiple components of dispersion
    • Lin, X., Breslow, N. E.: Bias correction in generalized linear mixed models with multiple components of dispersion. J. Am. Stat. Assoc. 91, 1007-1016 (1996).
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 1007-1016
    • Lin, X.1    Breslow, N.E.2
  • 40
    • 0346925709 scopus 로고    scopus 로고
    • Re-sampling and exchangeable arrays
    • McCullagh, P.: Re-sampling and exchangeable arrays. Bernoulli 6, 303-322 (2000).
    • (2000) Bernoulli , vol.6 , pp. 303-322
    • McCullagh, P.1
  • 43
    • 77949718272 scopus 로고    scopus 로고
    • Variable selection for semiparametric mixed models in longitudinal studies
    • Ni, X., Zhang, D., Zhang, H. H.: Variable selection for semiparametric mixed models in longitudinal studies. Biometrics 66, 79-88 (2010).
    • (2010) Biometrics , vol.66 , pp. 79-88
    • Ni, X.1    Zhang, D.2    Zhang, H.H.3
  • 45
    • 34547849507 scopus 로고    scopus 로고
    • 1-regularization path algorithm for generalized linear models
    • 1-regularization path algorithm for generalized linear models. J. R. Stat. Soc. B 19, 659-677 (2007).
    • (2007) J. R. Stat. Soc. B , vol.19 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 46
    • 84950445313 scopus 로고
    • Cross-validation of regression models
    • Picard, R., Cook, D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79, 575-583 (1984).
    • (1984) J. Am. Stat. Assoc. , vol.79 , pp. 575-583
    • Picard, R.1    Cook, D.2
  • 48
    • 54949144379 scopus 로고    scopus 로고
    • Variable inclusion and shrinkage algorithms
    • Radchenko, P., James, G. M.: Variable inclusion and shrinkage algorithms. J. Am. Stat. Assoc. 103, 1304-1315 (2008).
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 1304-1315
    • Radchenko, P.1    James, G.M.2
  • 49
    • 77956888303 scopus 로고
    • Estimation in generalised linear models with random effects
    • Schall, R.: Estimation in generalised linear models with random effects. Biometrika 78, 719-727 (1991).
    • (1991) Biometrika , vol.78 , pp. 719-727
    • Schall, R.1
  • 53
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461-464 (1978).
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 54
    • 33645581993 scopus 로고    scopus 로고
    • Microarray gene expression data with linked survival phenotypes: diffuse large-b-cell lymphoma revisited
    • Segal, M. R.: Microarray gene expression data with linked survival phenotypes: diffuse large-b-cell lymphoma revisited. Biostatistics 7, 268-285 (2006).
    • (2006) Biostatistics , vol.7 , pp. 268-285
    • Segal, M.R.1
  • 55
    • 35748970206 scopus 로고    scopus 로고
    • Bootstrap variants of the Akaike information criterion for mixed model selection
    • Shang, J., Cavanaugh, J. E.: Bootstrap variants of the Akaike information criterion for mixed model selection. Comput. Stat. Data Anal. 52, 2004-2021 (2008).
    • (2008) Comput. Stat. Data Anal. , vol.52 , pp. 2004-2021
    • Shang, J.1    Cavanaugh, J.E.2
  • 56
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Shevade, S. K., Keerthi, S. S.: A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19, 2246-2253 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 2246-2253
    • Shevade, S.K.1    Keerthi, S.S.2
  • 57
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with discussion)
    • Stone, M.: Cross-validatory choice and assessment of statistical predictions (with discussion). J. R. Stat. Soc. B 36, 111-147 (1974).
    • (1974) J. R. Stat. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 58
    • 0000319198 scopus 로고
    • Cross-validation: A review
    • Stone, M.: Cross-validation: A review. Math. Oper. forsch. Stat. 9, 127-139 (1978).
    • (1978) Math. Oper.Forsch. Stat. , vol.9 , pp. 127-139
    • Stone, M.1
  • 59
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267-288 (1996).
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 60
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani, R.: The lasso method for variable selection in the Cox model. Stat. Med. 16, 385-395 (1997).
    • (1997) Stat. Med. , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 62
    • 84890201888 scopus 로고    scopus 로고
    • Likelihood-based boosting in binary and ordinal random effects models
    • doi:10.1080/10618600.2012.694769
    • Tutz, G., Groll, A.: Likelihood-based boosting in binary and ordinal random effects models. J. Comput. Graph. Stat. (2012). doi: 10. 1080/10618600. 2012. 694769.
    • (2012) J. Comput. Graph. Stat.
    • Tutz, G.1    Groll, A.2
  • 63
    • 34249879561 scopus 로고    scopus 로고
    • A boosting approach to flexible semiparametric mixed models
    • Tutz, G., Reithinger, F.: A boosting approach to flexible semiparametric mixed models. Stat. Med. 26, 2872-2900 (2007).
    • (2007) Stat. Med. , vol.26 , pp. 2872-2900
    • Tutz, G.1    Reithinger, F.2
  • 65
    • 0000474486 scopus 로고    scopus 로고
    • A note on the use of Laplace's approximation for nonlinear mixed-effects models
    • Vonesh, E. F.: A note on the use of Laplace's approximation for nonlinear mixed-effects models. Biometrika 83, 447-452 (1996).
    • (1996) Biometrika , vol.83 , pp. 447-452
    • Vonesh, E.F.1
  • 66
    • 79958745424 scopus 로고    scopus 로고
    • Identifying QTLs and epistasis in structured plant populations using adaptive mixed lasso
    • Wang, D., Eskridge, K. M., Crossa, J.: Identifying QTLs and epistasis in structured plant populations using adaptive mixed lasso. J. Agric. Biol. Environ. Stat. 16, 170-184 (2010a).
    • (2010) J. Agric. Biol. Environ. Stat. , vol.16 , pp. 170-184
    • Wang, D.1    Eskridge, K.M.2    Crossa, J.3
  • 68
    • 0001684437 scopus 로고
    • Laplace's approximation for nonlinear mixed models
    • Wolfinger, R. W.: Laplace's approximation for nonlinear mixed models. Biometrika 80, 791-795 (1994).
    • (1994) Biometrika , vol.80 , pp. 791-795
    • Wolfinger, R.W.1
  • 69
    • 84949346776 scopus 로고
    • Generalized linear mixed models; a pseudolikelihood approach
    • Wolfinger, R., O'Connell, M.: Generalized linear mixed models; a pseudolikelihood approach. J. Stat. Comput. Simul. 48, 233-243 (1993).
    • (1993) J. Stat. Comput. Simul. , vol.48 , pp. 233-243
    • Wolfinger, R.1    O'Connell, M.2
  • 72
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B 68, 49-67 (2006).
    • (2006) J. R. Stat. Soc. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 73
    • 69949155103 scopus 로고    scopus 로고
    • The composite absolute penalties family for grouped and hierarchical variable selection
    • Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat. 37, 3468-3497 (2009).
    • (2009) Ann. Stat. , vol.37 , pp. 3468-3497
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 74
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301-320 (2005).
    • (2005) J. R. Stat. Soc. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 75
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H., Hastie, T.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418-1429 (2006).
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.