-
1
-
-
0000501656
-
Information theory and the extension of the maximum likelihood principle
-
Akaike, H.: Information theory and the extension of the maximum likelihood principle. In: Second International Symposium on Information Theory, pp. 267-281 (1973).
-
(1973)
Second International Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
3
-
-
78650073483
-
Joint variable selection of fixed and random effects in linear mixed-effects models
-
Bondell, H. D., Krishna, A., Ghosh, S. K.: Joint variable selection of fixed and random effects in linear mixed-effects models. Biometrics 66, 1069-1077 (2010).
-
(2010)
Biometrics
, vol.66
, pp. 1069-1077
-
-
Bondell, H.D.1
Krishna, A.2
Ghosh, S.K.3
-
4
-
-
77955981313
-
Bootstrap methods for generalized mixed models with applications to small area estimation
-
G. U. H. Seeber, B. J. Francis, R. Hatzinger, and G. Steckel-Berger (Eds.), New York: Springer
-
Booth, J. G.: Bootstrap methods for generalized mixed models with applications to small area estimation. In: Seeber, G. U. H., Francis, B. J., Hatzinger, R., Steckel-Berger, G. (eds.) Statistical Modelling, vol. 104, pp. 43-51. Springer, New York (1996).
-
(1996)
Statistical Modelling
, vol.104
, pp. 43-51
-
-
Booth, J.G.1
-
5
-
-
0033475053
-
Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
-
Booth, J. G., Hobert, J. P.: Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. R. Stat. Soc. B 61, 265-285 (1999).
-
(1999)
J. R. Stat. Soc. B
, vol.61
, pp. 265-285
-
-
Booth, J.G.1
Hobert, J.P.2
-
6
-
-
0030344230
-
Heuristics of instability and stabilization in model selection
-
Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Stat. 6, 2350-2383 (1996).
-
(1996)
Ann. Stat.
, vol.6
, pp. 2350-2383
-
-
Breiman, L.1
-
7
-
-
0346786584
-
Arcing classifiers
-
Breiman, L.: Arcing classifiers. Ann. Stat. 26, 801-849 (1998).
-
(1998)
Ann. Stat.
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
8
-
-
0011241944
-
Approximate inference in generalized linear mixed model
-
Breslow, N. E., Clayton, D. G.: Approximate inference in generalized linear mixed model. J. Am. Stat. Assoc. 88, 9-25 (1993).
-
(1993)
J. Am. Stat. Assoc.
, vol.88
, pp. 9-25
-
-
Breslow, N.E.1
Clayton, D.G.2
-
9
-
-
0003020981
-
Bias correction in generalized linear mixed models with a single component of dispersion
-
Breslow, N. E., Lin, X.: Bias correction in generalized linear mixed models with a single component of dispersion. Biometrika 82, 81-91 (1995).
-
(1995)
Biometrika
, vol.82
, pp. 81-91
-
-
Breslow, N.E.1
Lin, X.2
-
11
-
-
41549141939
-
Boosting algorithms: regularization, prediction and model fitting
-
Bühlmann, P., Hothorn, T.: Boosting algorithms: regularization, prediction and model fitting. Stat. Sci. 22, 477-522 (2007).
-
(2007)
Stat. Sci.
, vol.22
, pp. 477-522
-
-
Bühlmann, P.1
Hothorn, T.2
-
12
-
-
0043245810
-
2 loss: regression and classification
-
2 loss: regression and classification. J. Am. Stat. Assoc. 98, 324-339 (2003).
-
(2003)
J. Am. Stat. Assoc.
, vol.98
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
13
-
-
34548275795
-
The Dantzig selector: statistical estimation when p is much larger than n
-
Candes, E., Tao, T.: The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35, 2313-2351 (2007).
-
(2007)
Ann. Stat.
, vol.35
, pp. 2313-2351
-
-
Candes, E.1
Tao, T.2
-
17
-
-
84950461478
-
Estimating the error rate of a prediction rule: improvement on crossvalidation
-
Efron, B.: Estimating the error rate of a prediction rule: improvement on crossvalidation. J. Am. Stat. Assoc. 78, 316-331 (1983).
-
(1983)
J. Am. Stat. Assoc.
, vol.78
, pp. 316-331
-
-
Efron, B.1
-
18
-
-
80053264999
-
How biased is the apparent error rate of a prediction rule?
-
Efron, B.: How biased is the apparent error rate of a prediction rule? J. Am. Stat. Assoc. 81, 461-470 (1986).
-
(1986)
J. Am. Stat. Assoc.
, vol.81
, pp. 461-470
-
-
Efron, B.1
-
20
-
-
3242708140
-
Least angle regression
-
Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407-499 (2004).
-
(2004)
Ann. Stat.
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
21
-
-
0035649015
-
Bayesian inference for generalized additive mixed models based on Markov random field priors
-
doi:10.1111/1467-9876.00229
-
Fahrmeir, L., Lang, S.: Bayesian inference for generalized additive mixed models based on Markov random field priors. Appl. Stat. 50, 201-220 (2001). doi: 10. 1111/1467-9876. 00229.
-
(2001)
Appl. Stat.
, vol.50
, pp. 201-220
-
-
Fahrmeir, L.1
Lang, S.2
-
23
-
-
1542784498
-
Variable selection via nonconcave penalize likelihood and its oracle properties
-
Fan, J., Li, R.: Variable selection via nonconcave penalize likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348-1360 (2001).
-
(2001)
J. Am. Stat. Assoc.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
25
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman, J. H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 337-407 (2001).
-
(2001)
Ann. Stat.
, vol.29
, pp. 337-407
-
-
Friedman, J.H.1
-
26
-
-
84950645271
-
The predictive sample reuse method with applications
-
Geissler, S.: The predictive sample reuse method with applications. J. Am. Stat. Assoc. 70, 320-328 (1975).
-
(1975)
J. Am. Stat. Assoc.
, vol.70
, pp. 320-328
-
-
Geissler, S.1
-
27
-
-
34548105186
-
Large-scale Bayesian logistic regression for text categorization
-
Genkin, A., Lewis, D., Madigan, D.: Large-scale Bayesian logistic regression for text categorization. Technometrics 49, 291-304 (2007).
-
(2007)
Technometrics
, vol.49
, pp. 291-304
-
-
Genkin, A.1
Lewis, D.2
Madigan, D.3
-
28
-
-
77952568988
-
1 penalized estimation in the Cox proportional hazards model
-
1 penalized estimation in the Cox proportional hazards model. Biom. J. 52, 70-84 (2010).
-
(2010)
Biom. J.
, vol.52
, pp. 70-84
-
-
Goeman, J.J.1
-
31
-
-
21444446838
-
Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
-
Gui, J., Li, H. Z.: Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21, 3001-3008 (2005).
-
(2005)
Bioinformatics
, vol.21
, pp. 3001-3008
-
-
Gui, J.1
Li, H.Z.2
-
32
-
-
84925605946
-
The entire regularization path for the support vector machine
-
Hastie, T., Rosset, S., Tibshirani, R., Zhu, J.: The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5, 1391-1415 (2004).
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
33
-
-
79959368569
-
Fixed and random effects selection in mixed effects models
-
Ibrahim, J. G., Zhu, H., Garcia, R. I., Guo, R.: Fixed and random effects selection in mixed effects models. Biometrics 67, 495-503 (2011).
-
(2011)
Biometrics
, vol.67
, pp. 495-503
-
-
Ibrahim, J.G.1
Zhu, H.2
Garcia, R.I.3
Guo, R.4
-
34
-
-
66249085882
-
A generalized Dantzig selector with shrinkage tuning
-
James, G. M., Radchenko, P.: A generalized Dantzig selector with shrinkage tuning. Biometrika 96(2), 323-337 (2009).
-
(2009)
Biometrika
, vol.96
, Issue.2
, pp. 323-337
-
-
James, G.M.1
Radchenko, P.2
-
36
-
-
66949120727
-
Variable selection and model choice in geoadditive regression
-
Kneib, T., Hothorn, T., Tutz, G.: Variable selection and model choice in geoadditive regression. Biometrics 65, 626-634 (2009).
-
(2009)
Biometrics
, vol.65
, pp. 626-634
-
-
Kneib, T.1
Hothorn, T.2
Tutz, G.3
-
37
-
-
0033561718
-
Assessing the godness-of-fit of the laird and ware model-an example: the Jimma infant survival differential longitudinal study
-
Lesaffre, E., Asefa, M., Verbeke, G.: Assessing the godness-of-fit of the laird and ware model-an example: the Jimma infant survival differential longitudinal study. Stat. Med. 18, 835-854 (1999).
-
(1999)
Stat. Med.
, vol.18
, pp. 835-854
-
-
Lesaffre, E.1
Asefa, M.2
Verbeke, G.3
-
38
-
-
0030336576
-
Bias correction in generalized linear mixed models with multiple components of dispersion
-
Lin, X., Breslow, N. E.: Bias correction in generalized linear mixed models with multiple components of dispersion. J. Am. Stat. Assoc. 91, 1007-1016 (1996).
-
(1996)
J. Am. Stat. Assoc.
, vol.91
, pp. 1007-1016
-
-
Lin, X.1
Breslow, N.E.2
-
39
-
-
0003605027
-
-
Cary: SAS Institute Inc
-
Littell, R., Milliken, G., Stroup, W., Wolfinger, R.: SAS System for Mixed Models. SAS Institute Inc., Cary (1996).
-
(1996)
SAS System for Mixed Models
-
-
Littell, R.1
Milliken, G.2
Stroup, W.3
Wolfinger, R.4
-
40
-
-
0346925709
-
Re-sampling and exchangeable arrays
-
McCullagh, P.: Re-sampling and exchangeable arrays. Bernoulli 6, 303-322 (2000).
-
(2000)
Bernoulli
, vol.6
, pp. 303-322
-
-
McCullagh, P.1
-
41
-
-
0003646026
-
-
2nd edn., New York: Wiley
-
McCulloch, C. E., Searle, S. R., Neuhaus, J. M.: Generalized, Linear and Mixed Models, 2nd edn. Wiley, New York (2008).
-
(2008)
Generalized, Linear and Mixed Models
-
-
McCulloch, C.E.1
Searle, S.R.2
Neuhaus, J.M.3
-
42
-
-
37849035696
-
The group lasso for logistic regression
-
Meier, L., van de Geer, S., Bühlmann, P.: The group lasso for logistic regression. J. R. Stat. Soc. B 70, 53-71 (2008).
-
(2008)
J. R. Stat. Soc. B
, vol.70
, pp. 53-71
-
-
Meier, L.1
van de Geer, S.2
Bühlmann, P.3
-
43
-
-
77949718272
-
Variable selection for semiparametric mixed models in longitudinal studies
-
Ni, X., Zhang, D., Zhang, H. H.: Variable selection for semiparametric mixed models in longitudinal studies. Biometrics 66, 79-88 (2010).
-
(2010)
Biometrics
, vol.66
, pp. 79-88
-
-
Ni, X.1
Zhang, D.2
Zhang, H.H.3
-
45
-
-
34547849507
-
1-regularization path algorithm for generalized linear models
-
1-regularization path algorithm for generalized linear models. J. R. Stat. Soc. B 19, 659-677 (2007).
-
(2007)
J. R. Stat. Soc. B
, vol.19
, pp. 659-677
-
-
Park, M.Y.1
Hastie, T.2
-
46
-
-
84950445313
-
Cross-validation of regression models
-
Picard, R., Cook, D.: Cross-validation of regression models. J. Am. Stat. Assoc. 79, 575-583 (1984).
-
(1984)
J. Am. Stat. Assoc.
, vol.79
, pp. 575-583
-
-
Picard, R.1
Cook, D.2
-
48
-
-
54949144379
-
Variable inclusion and shrinkage algorithms
-
Radchenko, P., James, G. M.: Variable inclusion and shrinkage algorithms. J. Am. Stat. Assoc. 103, 1304-1315 (2008).
-
(2008)
J. Am. Stat. Assoc.
, vol.103
, pp. 1304-1315
-
-
Radchenko, P.1
James, G.M.2
-
49
-
-
77956888303
-
Estimation in generalised linear models with random effects
-
Schall, R.: Estimation in generalised linear models with random effects. Biometrika 78, 719-727 (1991).
-
(1991)
Biometrika
, vol.78
, pp. 719-727
-
-
Schall, R.1
-
53
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6, 461-464 (1978).
-
(1978)
Ann. Stat.
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
54
-
-
33645581993
-
Microarray gene expression data with linked survival phenotypes: diffuse large-b-cell lymphoma revisited
-
Segal, M. R.: Microarray gene expression data with linked survival phenotypes: diffuse large-b-cell lymphoma revisited. Biostatistics 7, 268-285 (2006).
-
(2006)
Biostatistics
, vol.7
, pp. 268-285
-
-
Segal, M.R.1
-
55
-
-
35748970206
-
Bootstrap variants of the Akaike information criterion for mixed model selection
-
Shang, J., Cavanaugh, J. E.: Bootstrap variants of the Akaike information criterion for mixed model selection. Comput. Stat. Data Anal. 52, 2004-2021 (2008).
-
(2008)
Comput. Stat. Data Anal.
, vol.52
, pp. 2004-2021
-
-
Shang, J.1
Cavanaugh, J.E.2
-
56
-
-
0345327592
-
A simple and efficient algorithm for gene selection using sparse logistic regression
-
Shevade, S. K., Keerthi, S. S.: A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics 19, 2246-2253 (2003).
-
(2003)
Bioinformatics
, vol.19
, pp. 2246-2253
-
-
Shevade, S.K.1
Keerthi, S.S.2
-
57
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions (with discussion)
-
Stone, M.: Cross-validatory choice and assessment of statistical predictions (with discussion). J. R. Stat. Soc. B 36, 111-147 (1974).
-
(1974)
J. R. Stat. Soc. B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
58
-
-
0000319198
-
Cross-validation: A review
-
Stone, M.: Cross-validation: A review. Math. Oper. forsch. Stat. 9, 127-139 (1978).
-
(1978)
Math. Oper.Forsch. Stat.
, vol.9
, pp. 127-139
-
-
Stone, M.1
-
59
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 58, 267-288 (1996).
-
(1996)
J. R. Stat. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
60
-
-
0031015557
-
The lasso method for variable selection in the Cox model
-
Tibshirani, R.: The lasso method for variable selection in the Cox model. Stat. Med. 16, 385-395 (1997).
-
(1997)
Stat. Med.
, vol.16
, pp. 385-395
-
-
Tibshirani, R.1
-
61
-
-
84890133437
-
Generalized linear mixed models based on boosting
-
T. Kneib and G. Tutz (Eds.), Heidelberg: Physica
-
Tutz, G., Groll, A.: Generalized linear mixed models based on boosting. In: Kneib, T., Tutz, G. (eds.) Statistical Modelling and Regression Structures-Festschrift in the Honour of Ludwig Fahrmeir. Physica, Heidelberg (2010).
-
(2010)
Statistical Modelling and Regression Structures-Festschrift in the Honour of Ludwig Fahrmeir
-
-
Tutz, G.1
Groll, A.2
-
62
-
-
84890201888
-
Likelihood-based boosting in binary and ordinal random effects models
-
doi:10.1080/10618600.2012.694769
-
Tutz, G., Groll, A.: Likelihood-based boosting in binary and ordinal random effects models. J. Comput. Graph. Stat. (2012). doi: 10. 1080/10618600. 2012. 694769.
-
(2012)
J. Comput. Graph. Stat.
-
-
Tutz, G.1
Groll, A.2
-
63
-
-
34249879561
-
A boosting approach to flexible semiparametric mixed models
-
Tutz, G., Reithinger, F.: A boosting approach to flexible semiparametric mixed models. Stat. Med. 26, 2872-2900 (2007).
-
(2007)
Stat. Med.
, vol.26
, pp. 2872-2900
-
-
Tutz, G.1
Reithinger, F.2
-
65
-
-
0000474486
-
A note on the use of Laplace's approximation for nonlinear mixed-effects models
-
Vonesh, E. F.: A note on the use of Laplace's approximation for nonlinear mixed-effects models. Biometrika 83, 447-452 (1996).
-
(1996)
Biometrika
, vol.83
, pp. 447-452
-
-
Vonesh, E.F.1
-
66
-
-
79958745424
-
Identifying QTLs and epistasis in structured plant populations using adaptive mixed lasso
-
Wang, D., Eskridge, K. M., Crossa, J.: Identifying QTLs and epistasis in structured plant populations using adaptive mixed lasso. J. Agric. Biol. Environ. Stat. 16, 170-184 (2010a).
-
(2010)
J. Agric. Biol. Environ. Stat.
, vol.16
, pp. 170-184
-
-
Wang, D.1
Eskridge, K.M.2
Crossa, J.3
-
67
-
-
84893932599
-
-
Technical Report 89, The University of Michigan
-
Wang, S., Song, P. X., Zhu, J.: Doubly regularized REML for estimation and selection of fixed and random effects in linear mixed-effects models. Technical Report 89, The University of Michigan, (2010b).
-
(2010)
Doubly regularized REML for estimation and selection of fixed and random effects in linear mixed-effects models
-
-
Wang, S.1
Song, P.X.2
Zhu, J.3
-
68
-
-
0001684437
-
Laplace's approximation for nonlinear mixed models
-
Wolfinger, R. W.: Laplace's approximation for nonlinear mixed models. Biometrika 80, 791-795 (1994).
-
(1994)
Biometrika
, vol.80
, pp. 791-795
-
-
Wolfinger, R.W.1
-
69
-
-
84949346776
-
Generalized linear mixed models; a pseudolikelihood approach
-
Wolfinger, R., O'Connell, M.: Generalized linear mixed models; a pseudolikelihood approach. J. Stat. Comput. Simul. 48, 233-243 (1993).
-
(1993)
J. Stat. Comput. Simul.
, vol.48
, pp. 233-243
-
-
Wolfinger, R.1
O'Connell, M.2
-
72
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B 68, 49-67 (2006).
-
(2006)
J. R. Stat. Soc. B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
73
-
-
69949155103
-
The composite absolute penalties family for grouped and hierarchical variable selection
-
Zhao, P., Rocha, G., Yu, B.: The composite absolute penalties family for grouped and hierarchical variable selection. Ann. Stat. 37, 3468-3497 (2009).
-
(2009)
Ann. Stat.
, vol.37
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
74
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301-320 (2005).
-
(2005)
J. R. Stat. Soc. B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
75
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
Zou, H., Hastie, T.: The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418-1429 (2006).
-
(2006)
J. Am. Stat. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
Hastie, T.2
|