메뉴 건너뛰기




Volumn 38, Issue 2, 2011, Pages 197-214

Estimation for High-Dimensional Linear Mixed-Effects Models Using ℓ1-Penalization

Author keywords

Adaptive Lasso; Coordinate gradient descent; Coordinatewise optimization; Lasso; Random effects model; Variable selection; Variance components

Indexed keywords


EID: 79954986664     PISSN: 03036898     EISSN: 14679469     Source Type: Journal    
DOI: 10.1111/j.1467-9469.2011.00740.x     Document Type: Article
Times cited : (162)

References (33)
  • 1
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • Bickel, P., Ritov, Y. & Tsybakov, A. (2009). Simultaneous analysis of lasso and dantzig selector. Ann. Statist. 37, 1705-1732.
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 2
    • 78650073483 scopus 로고    scopus 로고
    • Joint variable selection of fixed and random effects in linear mixed-effects models
    • Bondell, H. D., Krishna, A. & Gosh, S. K. (2010). Joint variable selection of fixed and random effects in linear mixed-effects models. Biometrics 66, 1069-1077.
    • (2010) Biometrics , vol.66 , pp. 1069-1077
    • Bondell, H.D.1    Krishna, A.2    Gosh, S.K.3
  • 4
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the lasso. Electron
    • Bunea, F., Tsybakov, A. & Wegkamp, M. (2007). Sparsity oracle inequalities for the lasso. Electron. J. Statist. 1, 169-194.
    • (2007) J. Statist. , vol.1 , pp. 169-194
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.3
  • 5
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: statistical estimation when p is much larger than n
    • Candes, E. & Tao, T. (2007). The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist., 35, 2313-2351.
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 8
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J., Hastie, T. & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. J. Statist. Softw. 33, 1-22.
    • (2010) J. Statist. Softw. , vol.33 , pp. 1-22
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the lasso
    • van de Geer, S. (2008). High-dimensional generalized linear models and the lasso. Ann. Statist. 36, 614-645.
    • (2008) Ann. Statist. , vol.36 , pp. 614-645
    • van de Geer, S.1
  • 10
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the lasso
    • van de Geer, S. & Bühlmann, P. (2009). On the conditions used to prove oracle results for the lasso. Electron. J. Stat. 3, 1360-1392.
    • (2009) Electron. J. Stat. , vol.3 , pp. 1360-1392
    • van de Geer, S.1    Bühlmann, P.2
  • 11
    • 79955754240 scopus 로고    scopus 로고
    • The adaptive and the thresholded lasso for potentially misspecified models. Preprint arXiv:1001.5176v3.
    • van de Geer, S., Bühlmann, P. & Zhou, S. (2010). The adaptive and the thresholded lasso for potentially misspecified models. Preprint arXiv:1001.5176v3.
    • (2010)
    • van de Geer, S.1    Bühlmann, P.2    Zhou, S.3
  • 12
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • Greenshtein, E. & Ritov, Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10, 971-988.
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 13
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive lasso for sparse high-dimensional regression models
    • Huang, J., Ma, S. & Zhang, C.-H. (2008). Adaptive lasso for sparse high-dimensional regression models. Statist. Sinica 18, 1603-1618.
    • (2008) Statist. Sinica , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.-H.3
  • 14
    • 79959368569 scopus 로고    scopus 로고
    • Fixed and random effects selection in mixed effects models
    • no. doi: 10.1111/j.1541-0420.2010.01463.x.
    • Ibrahim, J. G., Zhu, H., Garcia, R. I. & Guo, R. (2010). Fixed and random effects selection in mixed effects models. Biometrics, no. doi: 10.1111/j.1541-0420.2010.01463.x.
    • (2010) Biometrics
    • Ibrahim, J.G.1    Zhu, H.2    Garcia, R.I.3    Guo, R.4
  • 15
    • 0010778594 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 83, 1014-1022.
    • (1982) Biometrics , vol.83 , pp. 1014-1022
    • Laird, N.M.1    Ware, J.H.2
  • 17
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen, N. & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 18
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • Meinshausen, N. & Yu, B. (2009). Lasso-type recovery of sparse representations for high-dimensional data. Ann. Statist., 37, 246-270.
    • (2009) Ann. Statist. , vol.37 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 21
    • 77949718272 scopus 로고    scopus 로고
    • Variable selection for semiparametric mixed models in longitudinal studies
    • Ni, X., Zhang, D. & Zhang, H. H. (2010). Variable selection for semiparametric mixed models in longitudinal studies. Biometrics 66, 79-88.
    • (2010) Biometrics , vol.66 , pp. 79-88
    • Ni, X.1    Zhang, D.2    Zhang, H.H.3
  • 22
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Osborne, M. R., Presnell, B. & Turlach, B. (2000). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20, 389-403.
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-403
    • Osborne, M.R.1    Presnell, B.2    Turlach, B.3
  • 24
    • 77955057877 scopus 로고    scopus 로고
    • 1-penalization for mixture regression models (with discussion)
    • 1-penalization for mixture regression models (with discussion). TEST 19, 209-285.
    • (2010) TEST , vol.19 , pp. 209-285
    • Städler, N.1    Bühlmann, P.2    van de Geer, S.3
  • 26
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • Tseng, P. & Yun, S. (2009). A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117, 387-423.
    • (2009) Math. Program. , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2
  • 28
    • 69049091975 scopus 로고    scopus 로고
    • High-dimensional variable selection
    • Wasserman, L. & Roeder, K. (2009). High-dimensional variable selection. Ann. Statist. 37, 2178-2201.
    • (2009) Ann. Statist. , vol.37 , pp. 2178-2201
    • Wasserman, L.1    Roeder, K.2
  • 29
    • 84863879353 scopus 로고    scopus 로고
    • Coordinate descent algorithms for lasso penalized regression
    • Wu, T. & Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. Ann. Appl. Stat. 2, 224-244.
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 224-244
    • Wu, T.1    Lange, K.2
  • 30
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • Zhang, C.-H. & Huang, J. (2008). The sparsity and bias of the lasso selection in high-dimensional linear regression. Ann. Statist. 36, 1567-1594.
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 31
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • Zhao, P. & Yu, B. (2006). On model selection consistency of lasso. J. Mach. Learn. Res. 7, 2541-2563.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 32
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101, 1418-1429.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 33
    • 34548536008 scopus 로고    scopus 로고
    • On the ''degrees of freedom'' of the lasso
    • Zou, H., Hastie, T. & Tibshirani, R. (2007). On the ''degrees of freedom'' of the lasso. Ann. Statist. 35, 2173-2192.
    • (2007) Ann. Statist. , vol.35 , pp. 2173-2192
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.