-
1
-
-
0033580466
-
The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway
-
Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. 1999. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252-256. http://dx.doi.org/10.1038/18465.
-
(1999)
Nature
, vol.398
, pp. 252-256
-
-
Ninomiya-Tsuji, J.1
Kishimoto, K.2
Hiyama, A.3
Inoue, J.4
Cao, Z.5
Matsumoto, K.6
-
2
-
-
0029940355
-
TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction
-
Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. 1996. TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 272:1179-1182. http://dx.doi.org/10.1126/science.272.5265.1179.
-
(1996)
Science
, vol.272
, pp. 1179-1182
-
-
Shibuya, H.1
Yamaguchi, K.2
Shirakabe, K.3
Tonegawa, A.4
Gotoh, Y.5
Ueno, N.6
Irie, K.7
Nishida, E.8
Matsumoto, K.9
-
3
-
-
38549084725
-
A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation
-
Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Núñez G, Inohara N. 2008. A critical role of RICK/RIP2 polyubiquitination in Nod-induced NF-kappaB activation. EMBO J. 27:373-383. http://dx.doi.org/10.1038/sj.emboj.7601962.
-
(2008)
EMBO J
, vol.27
, pp. 373-383
-
-
Hasegawa, M.1
Fujimoto, Y.2
Lucas, P.C.3
Nakano, H.4
Fukase, K.5
Núñez, G.6
Inohara, N.7
-
4
-
-
0035913278
-
TAK1 is an ubiquitin-dependent kinase of MKK and IKK
-
Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. 2001. TAK1 is an ubiquitin-dependent kinase of MKK and IKK. Nature 412:346-351. http://dx.doi.org/10.1038/35085597.
-
(2001)
Nature
, vol.412
, pp. 346-351
-
-
Wang, C.1
Deng, L.2
Hong, M.3
Akkaraju, G.R.4
Inoue, J.5
Chen, Z.J.6
-
5
-
-
0346243941
-
Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling
-
Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K. 2003. Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J. 22:6277-6288. http://dx.doi.org/10.1093/emboj/cdg605.
-
(2003)
EMBO J
, vol.22
, pp. 6277-6288
-
-
Ishitani, T.1
Takaesu, G.2
Ninomiya-Tsuji, J.3
Shibuya, H.4
Gaynor, R.B.5
Matsumoto, K.6
-
6
-
-
1542314841
-
TAB3, a new binding partner of the protein kinase TAK1
-
Cheung PC, Nebreda AR, Cohen P. 2004. TAB3, a new binding partner of the protein kinase TAK1. Biochem. J. 378:27-34. http://dx.doi.org/10.1042/BJ20031794.
-
(2004)
Biochem. J.
, vol.378
, pp. 27-34
-
-
Cheung, P.C.1
Nebreda, A.R.2
Cohen, P.3
-
7
-
-
33750564444
-
TAK1- binding protein 1 is a pseudophosphatase
-
Conner SH, Kular G, Peggie M, Shepherd S, Schüttelkopf AW, Cohen P, Van Aalten DM. 2006. TAK1-binding protein 1 is a pseudophosphatase. Biochem. J. 399:427-434. http://dx.doi.org/10.1042/BJ20061077.
-
(2006)
Biochem. J.
, vol.399
, pp. 427-434
-
-
Conner, S.H.1
Kular, G.2
Peggie, M.3
Shepherd, S.4
Schüttelkopf, A.W.5
Cohen, P.6
Van Aalten, D.M.7
-
8
-
-
38949115893
-
Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex
-
Mendoza H, Campbell DG, Burness K, Hastie J, Ronkina N, Shim JH, Arthur JS, Davis RJ, Gaestel M, Johnson GL, Ghosh S, Cohen P. 2008. Roles for TAB1 in regulating the IL-1-dependent phosphorylation of the TAB3 regulatory subunit and activity of the TAK1 complex. Biochem. J. 409:711-722. http://dx.doi.org/10.1042/BJ20071149.
-
(2008)
Biochem. J.
, vol.409
, pp. 711-722
-
-
Mendoza, H.1
Campbell, D.G.2
Burness, K.3
Hastie, J.4
Ronkina, N.5
Shim, J.H.6
Arthur, J.S.7
Davis, R.J.8
Gaestel, M.9
Johnson, G.L.10
Ghosh, S.11
Cohen, P.12
-
9
-
-
39149114737
-
Homeostatic interactions betweenMEKK3and TAK1 involved in NF-kappaB signaling
-
Di Y, Li S, Wang L, Zhang Y, Dorf ME. 2008. Homeostatic interactions betweenMEKK3and TAK1 involved in NF-kappaB signaling. Cell. Signal. 20:705-713. http://dx.doi.org/10.1016/j.cellsig.2007.12.007.
-
(2008)
Cell. Signal.
, vol.20
, pp. 705-713
-
-
Di, Y.1
Li, S.2
Wang, L.3
Zhang, Y.4
Dorf, M.E.5
-
10
-
-
0034693222
-
ASK1 inhibits interleukin-1-induced NF-kappa B activity through disruption of TRAF6-TAK1 interaction
-
Mochida Y, Takeda K, Saitoh M, Nishitoh H, Amagasa T, Ninomiya-Tsuji J, Matsumoto K, Ichijo H. 2000. ASK1 inhibits interleukin-1-induced NF-kappa B activity through disruption of TRAF6-TAK1 interaction. J. Biol. Chem. 275:32747-32752. http://dx.doi.org/10.1074/jbc.M003042200.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 32747-32752
-
-
Mochida, Y.1
Takeda, K.2
Saitoh, M.3
Nishitoh, H.4
Amagasa, T.5
Ninomiya-Tsuji, J.6
Matsumoto, K.7
Ichijo, H.8
-
11
-
-
84875793866
-
TAK1 regulates autophagic cell death by suppressing the phosphorylation of p70 S6 kinase 1
-
Shin JH, Min SH, Kim SJ, Kim YI, Park J, Lee HK, Yoo OJ. 2013. TAK1 regulates autophagic cell death by suppressing the phosphorylation of p70 S6 kinase 1. Sci. Rep. 3:1561. http://dx.doi.org/10.1038/srep01561.
-
(2013)
Sci. Rep.
, vol.3
, pp. 1561
-
-
Shin, J.H.1
Min, S.H.2
Kim, S.J.3
Kim, Y.I.4
Park, J.5
Lee, H.K.6
Yoo, O.J.7
-
12
-
-
80052782891
-
Phospholipase A(2) of peroxiredoxin 6 has a critical role in tumor necrosis factor-induced apoptosis
-
Kim SY, Chun E, Lee KY. 2011. Phospholipase A(2) of peroxiredoxin 6 has a critical role in tumor necrosis factor-induced apoptosis. Cell Death Differ. 18:1573-1583. http://dx.doi.org/10.1038/cdd.2011.21.
-
(2011)
Cell Death Differ
, vol.18
, pp. 1573-1583
-
-
Kim, S.Y.1
Chun, E.2
Lee, K.Y.3
-
13
-
-
84864867582
-
AMP-activated protein kinase-β1 as an activating kinase of TGF-β-activated kinase 1 has a key role in inflammatory signals
-
Kim SY, Jeong S, Jung E, Baik KH, Chang MH, Kim SA, Shim JH, Chun E, Lee KY. 2012. AMP-activated protein kinase-β1 as an activating kinase of TGF-β-activated kinase 1 has a key role in inflammatory signals. Cell Death Dis. 3:e357. http://dx.doi.org/10.1038/cddis.2012.95.
-
(2012)
Cell Death Dis
, vol.3
-
-
Kim, S.Y.1
Jeong, S.2
Jung, E.3
Baik, K.H.4
Chang, M.H.5
Kim, S.A.6
Shim, J.H.7
Chun, E.8
Lee, K.Y.9
-
14
-
-
84863043792
-
Reciprocal inhibition between the transforming growth factor-β-activated kinase 1 (TAK1) and apoptosis signal-regulating kinase 1 (ASK1) mitogen-activated protein kinase kinase kinases and its suppression by TAK1-binding protein 2 (TAB2), an adapter protein for TAK1
-
Kim SY, Shim JH, Chun E, Lee KY. 2012. Reciprocal inhibition between the transforming growth factor-β-activated kinase 1 (TAK1) and apoptosis signal-regulating kinase 1 (ASK1) mitogen-activated protein kinase kinase kinases and its suppression by TAK1-binding protein 2 (TAB2), an adapter protein for TAK1. J. Biol. Chem. 287:3381-3391. http://dx.doi.org/10.1074/jbc.M111.317875.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 3381-3391
-
-
Kim, S.Y.1
Shim, J.H.2
Chun, E.3
Lee, K.Y.4
-
15
-
-
33748608315
-
The diacylated lipopeptide FSL-1 induces TLR2-mediated Th2 responses
-
Kiura K, Kataoka H, Yasuda M, Inoue N, Shibata K. 2006. The diacylated lipopeptide FSL-1 induces TLR2-mediated Th2 responses. FEMS Immunol. Med. Microbiol. 48:44-55. http://dx.doi.org/10.1111/j.1574-695X.2006.00119.x.
-
(2006)
FEMS Immunol. Med. Microbiol.
, vol.48
, pp. 44-55
-
-
Kiura, K.1
Kataoka, H.2
Yasuda, M.3
Inoue, N.4
Shibata, K.5
-
16
-
-
28144449928
-
Structural basis for the interaction of TAK1 kinase with its activating protein TAB1
-
Brown K, Vial SC, Dedi N, Long JM, Dunster NJ, Cheetham GM. 2005. Structural basis for the interaction of TAK1 kinase with its activating protein TAB1. J. Mol. Biol. 354:1013-1020. http://dx.doi.org/10.1016/j.jmb.2005.09.098.
-
(2005)
J. Mol. Biol.
, vol.354
, pp. 1013-1020
-
-
Brown, K.1
Vial, S.C.2
Dedi, N.3
Long, J.M.4
Dunster, N.J.5
Cheetham, G.M.6
-
17
-
-
84858795203
-
O- GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release
-
Pathak S, Borodkin VS, Albarbarawi O, Campbell DG, Ibrahim A, Van Aalten DM. 2012. O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J. 31:1394-1404. http://dx.doi.org/10.1038/emboj.2012.8.
-
(2012)
EMBO J
, vol.31
, pp. 1394-1404
-
-
Pathak, S.1
Borodkin, V.S.2
Albarbarawi, O.3
Campbell, D.G.4
Ibrahim, A.5
Van Aalten, D.M.6
-
18
-
-
27744577296
-
TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo
-
Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S. 2005. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19:2668-2681. http://dx.doi.org/10.1101/gad.1360605.
-
(2005)
Genes Dev
, vol.19
, pp. 2668-2681
-
-
Shim, J.H.1
Xiao, C.2
Paschal, A.E.3
Bailey, S.T.4
Rao, P.5
Hayden, M.S.6
Lee, K.Y.7
Bussey, C.8
Steckel, M.9
Tanaka, N.10
Yamada, G.11
Akira, S.12
Matsumoto, K.13
Ghosh, S.14
-
19
-
-
0034886143
-
Toll-like receptors: critical proteins linking innate and acquired immunity
-
Akira S, Takeda K, Kaisho T. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675-680. http:/dx.doi.org/10.1038/90609.
-
(2001)
Nat. Immunol.
, vol.2
, pp. 675-680
-
-
Akira, S.1
Takeda, K.2
Kaisho, T.3
-
20
-
-
0035817925
-
Mal (MyD88-adapterlike) is required for Toll-like receptor-4 signal transduction
-
Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O'Neill LA. 2001. Mal (MyD88-adapterlike) is required for Toll-like receptor-4 signal transduction. Nature 413: 78-83. http://dx.doi.org/10.1038/35092578.
-
(2001)
Nature
, vol.413
, pp. 78-83
-
-
Fitzgerald, K.A.1
Palsson-McDermott, E.M.2
Bowie, A.G.3
Jefferies, C.A.4
Mansell, A.S.5
Brady, G.6
Brint, E.7
Dunne, A.8
Gray, P.9
Harte, M.T.10
McMurray, D.11
Smith, D.E.12
Sims, J.E.13
Bird, T.A.14
O'Neill, L.A.15
-
21
-
-
0037320451
-
TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction
-
Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4:161-167. http://dx.doi.org/10.1038/ni886.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 161-167
-
-
Oshiumi, H.1
Matsumoto, M.2
Funami, K.3
Akazawa, T.4
Seya, T.5
-
22
-
-
0742324860
-
TLR signaling pathways
-
Takeda K, Akira S. 2004. TLR signaling pathways. Semin. Immunol. 16:3-9. http://dx.doi.org/10.1016/j.smim.2003.10.003.
-
(2004)
Semin. Immunol.
, vol.16
, pp. 3-9
-
-
Takeda, K.1
Akira, S.2
-
23
-
-
0034644474
-
Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain
-
Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ. 2000. Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351-361. http://dx.doi.org/10.1016/S0092-8674(00)00126-4.
-
(2000)
Cell
, vol.103
, pp. 351-361
-
-
Deng, L.1
Wang, C.2
Spencer, E.3
Yang, L.4
Braun, A.5
You, J.6
Slaughter, C.7
Pickart, C.8
Chen, Z.J.9
-
24
-
-
0034595826
-
Phosphorylationdependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1
-
Sakurai H, Miyoshi H, Mizukami J, Sugita T. 2000. Phosphorylationdependent activation of TAK1 mitogen-activated protein kinase kinase kinase by TAB1. FEBS Lett. 474:141-145. http://dx.doi.org/10.1016/S0014-5793(00)01588-X.
-
(2000)
FEBS Lett
, vol.474
, pp. 141-145
-
-
Sakurai, H.1
Miyoshi, H.2
Mizukami, J.3
Sugita, T.4
-
25
-
-
33646829136
-
TAB-1 modulates intracellular localization of p38 MAP kinase and downstream signaling
-
Lu G, Kang YJ, Han J, Herschman HR, Stefani E, Wang Y. 2006. TAB-1 modulates intracellular localization of p38 MAP kinase and downstream signaling. J. Biol. Chem. 281:6087-6095. http://dx.doi.org/10.1074/jbc.M507610200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 6087-6095
-
-
Lu, G.1
Kang, Y.J.2
Han, J.3
Herschman, H.R.4
Stefani, E.5
Wang, Y.6
-
26
-
-
0034056165
-
Increased frequency of HCV and HBV infection in type 2 diabetic patients
-
Sangiorgio L, Attardo T, Gangemi R, Rubino C, Barone M, Lunetta M. 2000. Increased frequency of HCV and HBV infection in type 2 diabetic patients. Diabetes Res. Clin. Pract. 48:147-151. http://dx.doi.org/10.1016/S0168-8227(99)00135-7.
-
(2000)
Diabetes Res. Clin. Pract.
, vol.48
, pp. 147-151
-
-
Sangiorgio, L.1
Attardo, T.2
Gangemi, R.3
Rubino, C.4
Barone, M.5
Lunetta, M.6
-
27
-
-
77958617190
-
Type 2 diabetes mellitus and increased risk for malaria infection
-
Danquah I, Bedu-Addo G, Mockenhaupt FP. 2010. Type 2 diabetes mellitus and increased risk for malaria infection. Emerg. Infect. Dis. 16: 1601-1604. http://dx.doi.org/10.3201/eid1610.100399.
-
(2010)
Emerg. Infect. Dis.
, vol.16
, pp. 1601-1604
-
-
Danquah, I.1
Bedu-Addo, G.2
Mockenhaupt, F.P.3
-
28
-
-
22544478489
-
Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus
-
Muller LM, Gorter KJ, Hak E, Goudzwaard WL, Schellevis FG, Hoepelman AI, Rutten GE. 2005. Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clin. Infect. Dis. 41:281- 288. http://dx.doi.org/10.1086/431587.
-
(2005)
Clin. Infect. Dis.
, vol.41
, pp. 281-288
-
-
Muller, L.M.1
Gorter, K.J.2
Hak, E.3
Goudzwaard, W.L.4
Schellevis, F.G.5
Hoepelman, A.I.6
Rutten, G.E.7
-
29
-
-
33744505375
-
Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1 S6K1
-
Um SH, D'Alessio D, Thomas G. 2006. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab. 3:393-402. http://dx.doi.org/10.1016/j.cmet.2006.05.003.
-
(2006)
Cell Metab
, vol.3
, pp. 393-402
-
-
Um, S.H.1
D'Alessio, D.2
Thomas, G.3
-
30
-
-
85047690709
-
Increased CD36 protein as a response to defective insulin signaling in macrophages
-
Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, Tall AR. 2004. Increased CD36 protein as a response to defective insulin signaling in macrophages. J. Clin. Invest. 113:764-773. http://dx.doi.org/10.1172/JCI200419528.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 764-773
-
-
Liang, C.P.1
Han, S.2
Okamoto, H.3
Carnemolla, R.4
Tabas, I.5
Accili, D.6
Tall, A.R.7
-
31
-
-
34250214950
-
The macrophage at the crossroads of insulin resistance and atherosclerosis
-
Liang CP, Han S, Senokuchi T, Tall AR. 2007. The macrophage at the crossroads of insulin resistance and atherosclerosis. Circ. Res. 100:1546- 1555. http://dx.doi.org/10.1161/CIRCRESAHA.107.152165.
-
(2007)
Circ. Res.
, vol.100
, pp. 1546-1555
-
-
Liang, C.P.1
Han, S.2
Senokuchi, T.3
Tall, A.R.4
-
32
-
-
33751172758
-
Recognition and signaling by toll-like receptors
-
West AP, Koblansky AA, Ghosh S. 2006. Recognition and signaling by toll-like receptors. Annu. Rev. Cell Dev. Biol. 22:409-437. http://dx.doi.org/10.1146/annurev.cellbio.21.122303.115827.
-
(2006)
Annu. Rev. Cell Dev. Biol
, vol.22
, pp. 409-437
-
-
West, A.P.1
Koblansky, A.A.2
Ghosh, S.3
-
33
-
-
0031012544
-
Insulin receptor substrate-2 is the major 170-kDa protein phosphorylated on tyrosine in response to cytokines in murine lymphohemopoietic cells
-
Welham MJ, Bone H, Levings M, Learmonth L, Wang LM, Leslie KB, Pierce JH, Schrader JW. 1997. Insulin receptor substrate-2 is the major 170-kDa protein phosphorylated on tyrosine in response to cytokines in murine lymphohemopoietic cells. J. Biol. Chem. 272:1377-1381. http://dx.doi.org/10.1074/jbc.272.2.1377.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 1377-1381
-
-
Welham, M.J.1
Bone, H.2
Levings, M.3
Learmonth, L.4
Wang, L.M.5
Leslie, K.B.6
Pierce, J.H.7
Schrader, J.W.8
|