메뉴 건너뛰기




Volumn 57, Issue 2, 2013, Pages 35-48

The effect of parameter priors on Bayesian relevance and effect size measures

Author keywords

Bayesian networks; Bayesian statistical framework; Effect size; Relevance measures

Indexed keywords

ELECTRICAL ENGINEERING; COMPLEX NETWORKS; STATISTICAL TESTS;

EID: 84891773110     PISSN: 20645260     EISSN: 20645279     Source Type: Journal    
DOI: 10.3311/PPee.2088     Document Type: Article
Times cited : (5)

References (27)
  • 1
    • 21244467165 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs
    • Acid S, de Campos LM, Castellano JG, Learning Bayesian network classifiers: searching in a space of partially directed acyclic graphs., Machine Learning, 59, (2005), 213-235, DOI 10.1007/s10994-005-0473-4. (Pubitemid 40890478)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 213-235
    • Acid, S.1    De Campos, L.M.2    Castellano, J.G.3
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • DOI 10.1109/tac.1974.1100705
    • Akaike H, A new look at the statistical model identification., IEEE Trans. Auto. Cont., 19, (1974), 716-723, DOI 10.1109/tac.1974.1100705.
    • (1974) IEEE Trans. Auto. Cont. , vol.19 , pp. 716-723
    • Akaike, H.1
  • 5
    • 70350001466 scopus 로고    scopus 로고
    • A Bayesian view of challenges in feature selection: Feature aggregation, multiple targets, redundancy and interaction
    • Antal P, Millinghoffer A, Hullam G, Szalai C, Falus A, A Bayesian view of challenges in feature selection: Feature aggregation, multiple targets, redundancy and interaction., JMLR Proceeding, 4, (2008), 74-89.
    • (2008) JMLR Proceeding , vol.4 , pp. 74-89
    • Antal, P.1    Millinghoffer, A.2    Hullam, G.3    Szalai, C.4    Falus, A.5
  • 10
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • DOI 10.1.1.88.4436
    • Cooper GF, Herskovits E, A Bayesian method for the induction of probabilistic networks from data., Machine Learning, 9, (1992), 309-347, DOI 10.1.1.88.4436.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 11
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • DOI 10.1.1.111.3429
    • Friedman N, Koller D, Being Bayesian about network structure., Machine Learning, 50, (2003), 95-125, DOI 10.1.1.111.3429.
    • (2003) Machine Learning , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 12
    • 0004063546 scopus 로고
    • Likelihoods and parameter priors for Bayesian networks
    • Tech. Rep. MSR-TR-95-54
    • Heckerman D, Geiger D, Likelihoods and parameter priors for Bayesian networks, MicroSoft Research., 1995. Tech. Rep. MSR-TR-95-54.
    • (1995) MicroSoft Research.
    • Heckerman, D.1    Geiger, D.2
  • 13
    • 84874746433 scopus 로고    scopus 로고
    • Estimation of effect size posterior using model averaging over Bayesian network structures and parameters
    • Granada, Spain
    • Hullam G, Antal P, Estimation of effect size posterior using model averaging over Bayesian network structures and parameters., In: Proceedings of the 6th EuropeanWorkshop on Probabilistic Graphical Models.; Granada, Spain, 2012, pp. 147-154.
    • (2012) Proceedings of the 6th EuropeanWorkshop on Probabilistic Graphical Models , pp. 147-154
    • Hullam, G.1    Antal, P.2
  • 15
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • PII S000437029700043X
    • Kohavi R, John GH, Wrappers for feature subset selection., Artificial Intelligence, 97, (1997), 273-324, DOI 10.1016/S0004-3702(97)00043-X. (Pubitemid 127401107)
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 16
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan D, York J, Bayesian graphical models for discrete data, Internat. Statist. Rev., 63, (1995), 215-232.
    • (1995) Internat. Statist. Rev. , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 19
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • DOI 10.1214/aos/1176344136
    • Schwartz G, Estimating the dimension of a model, Annals of Statistics, 6, (1978), 461-464, DOI 10.1214/aos/1176344136.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 24
    • 70349303959 scopus 로고    scopus 로고
    • Bayesian statistical methods for genetic association studies
    • DOI 10.1038/nrg2615
    • Stephens M, Balding DJ, Bayesian statistical methods for genetic association studies., Nature Review Genetics, 10(10), (2009), 681-690, DOI 10.1038/nrg2615.
    • (2009) Nature Review Genetics , vol.10 , Issue.10 , pp. 681-690
    • Stephens, M.1    Balding, D.J.2
  • 25
  • 27
    • 84858253287 scopus 로고    scopus 로고
    • Evaluation of a partial genome screening of two asthma susceptibility regions using Bayesian network based Bayesian multilevel analysis of relevance
    • DOI 10.1371/journal.pone.0033573
    • Ungvari I, Hullam G, Antal P, Kiszel PS, Gezsi A, Evaluation of a partial genome screening of two asthma susceptibility regions using Bayesian network based Bayesian multilevel analysis of relevance, PLoS ONE, 7(2), (2012), DOI 10.1371/journal.pone.0033573.
    • (2012) PLoS ONE , vol.7 , Issue.2
    • Ungvari, I.1    Hullam, G.2    Antal, P.3    Kiszel, P.S.4    Gezsi, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.