메뉴 건너뛰기




Volumn , Issue , 2008, Pages 511-518

Learning the Bayesian network structure: Dirichlet prior versus data

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTICAL APPROXIMATION; BAYESIAN APPROACHES; BAYESIAN NETWORK STRUCTURE; DIRICHLET PRIOR; EMPIRICAL DISTRIBUTIONS; GRAPHICAL MODEL; MAIN EFFECT; MAXIMUM A POSTERIORI; MODEL PARAMETERS; SAMPLE SIZES; STRUCTURE-LEARNING;

EID: 70349888140     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (48)

References (15)
  • 1
    • 0000501656 scopus 로고
    • Information Theory and an extension of the maximum likelihood principle
    • Petrox, B. N., & Caski, F. (eds)
    • Akaike, H. 1973. Information Theory and an extension of the maximum likelihood principle. Pages 267-81 of: Petrox, B. N., & Caski, F. (eds), Second International Symposium on Information Theory.
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0001926525 scopus 로고
    • Theory refinement on Bayesian networks
    • D'Ambrosio, B., Smets, P., & Bonissone, P. (eds). Morgan Kaufmann
    • Buntine, W. 1991. Theory refinement on Bayesian networks. Pages 52-60 of: D'Ambrosio, B., Smets, P., & Bonissone, P. (eds), Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann.
    • (1991) Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence , pp. 52-60
    • Buntine, W.1
  • 6
    • 0000554045 scopus 로고
    • On the choice of a model to fit data from an exponential family
    • Haughton, D. M. A. 1988. On the choice of a model to fit data from an exponential family. The Annals of Statistics, 16(1), 342-55.
    • (1988) The Annals of Statistics , vol.16 , Issue.1 , pp. 342-355
    • Haughton, D.M.A.1
  • 7
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., & Chickering, D. M. 1995. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 9
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • Koivisto, M., & Sood, K. 2004. Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5, 549-73.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-73
    • Koivisto, M.1    Sood, K.2
  • 10
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. 1978. Modeling by shortest data description. Automatica, 14, 465-71.
    • (1978) Automatica , vol.14 , pp. 465-71
    • Rissanen, J.1
  • 11
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. 1978. Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-64.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-64
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.