-
2
-
-
51949086172
-
Semi-supervised classification by low density separation
-
Chapelle, O., and Zien, A. 2005. Semi-supervised classification by low density separation. In AISTAT 2005.
-
(2005)
AISTAT 2005
-
-
Chapelle, O.1
Zien, A.2
-
4
-
-
84858729241
-
Adaptive regularization of weight vectors
-
Crammer, K.; Kulesza, A.; and Dredze, M. 2009. Adaptive regularization of weight vectors. In NIPS 22.
-
(2009)
NIPS
, vol.22
-
-
Crammer, K.1
Kulesza, A.2
Dredze, M.3
-
5
-
-
77951131231
-
A tutorial on particle filtering and smoothing: Fifteen years later
-
Crisan, D., and Rozovsky, B., eds., Oxford University Press
-
Doucet, A., and Johansen, A. M. 2009. A tutorial on particle filtering and smoothing: Fifteen years later. In Crisan, D., and Rozovsky, B., eds., Handbook of Nonlinear Filtering. Oxford University Press.
-
(2009)
Handbook of Nonlinear Filtering
-
-
Doucet, A.1
Johansen, A.M.2
-
7
-
-
51749085814
-
An online semi-supervised active learning algorithm with self-organizing incremental neural network
-
Furao, S.; Sakurai, K.; Kamiya, Y.; and Hasegawa, O. 2007. An online semi-supervised active learning algorithm with self-organizing incremental neural network. In IJCNN.
-
(2007)
IJCNN
-
-
Furao, S.1
Sakurai, K.2
Kamiya, Y.3
Hasegawa, O.4
-
8
-
-
84865371361
-
A weakly informative default prior distribution for logistic and other regression models
-
Gelman, A.; Jakulin, A.; Pittau, M. G.; and Su, Y.-S. 2008. A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics 2(4):1360-1383.
-
(2008)
Annals of Applied Statistics
, vol.2
, Issue.4
, pp. 1360-1383
-
-
Gelman, A.1
Jakulin, A.2
Pittau, M.G.3
Su, Y.-S.4
-
10
-
-
59549084072
-
Online manifold regularization: A new learning setting and empirical study
-
Goldberg, A. B.; Li, M.; and Zhu, X. 2008. Online manifold regularization: A new learning setting and empirical study. In ECML PKDD.
-
(2008)
ECML PKDD
-
-
Goldberg, A.B.1
Li, M.2
Zhu, X.3
-
11
-
-
70350531007
-
Semi-supervised on-line boosting for robust tracking
-
Grabner, H.; Leistner, C.; and Bischof, H. 2008. Semi-supervised on-line boosting for robust tracking. In ECCV.
-
(2008)
ECCV
-
-
Grabner, H.1
Leistner, C.2
Bischof, H.3
-
12
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
Hastings, W. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.1
-
13
-
-
33646006173
-
Semi-supervised learning via Gaussian processes
-
Lawrence, N. D., and Jordan, M. I. 2004. Semi-supervised learning via Gaussian processes. In NIPS 17.
-
(2004)
NIPS
, vol.17
-
-
Lawrence, N.D.1
Jordan, M.I.2
-
14
-
-
5744249209
-
Equation of state calculations by fast computing machines
-
Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; and Teller, E. 1953. Equation of state calculations by fast computing machines. Journal of Chemical Physics 21:1087-1092.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
15
-
-
80055026812
-
Noisy generalized binary search
-
Nowak, R. 2009. Noisy generalized binary search. In NIPS 22.
-
(2009)
NIPS
, vol.22
-
-
Nowak, R.1
-
16
-
-
77953218689
-
Random features for large-scale kernel machines
-
Rahimi, A., and Recht, B. 2007. Random features for large-scale kernel machines. In NIPS 20.
-
(2007)
NIPS
, vol.20
-
-
Rahimi, A.1
Recht, B.2
-
17
-
-
0037527978
-
A sequential Monte Carlo method for Bayesian analysis of massive datasets
-
Ridgeway, G., and Madigan, D. 2003. A sequential Monte Carlo method for Bayesian analysis of massive datasets. Journal of Data Mining and Knowledge Discovery 7(3):301-319.
-
(2003)
Journal of Data Mining and Knowledge Discovery
, vol.7
, Issue.3
, pp. 301-319
-
-
Ridgeway, G.1
Madigan, D.2
-
18
-
-
84970983203
-
Unlabeled data: Now it helps, now it doesn't
-
Singh, A.; Nowak, R.; and Zhu, X. 2008. Unlabeled data: Now it helps, now it doesn't. In NIPS 21.
-
(2008)
NIPS
, vol.21
-
-
Singh, A.1
Nowak, R.2
Zhu, X.3
-
19
-
-
50649099635
-
Co-tracking using semi-supervised support vector machines
-
Tang, F.; Brennan, S.; Zhao, Q.; and Tao, H. 2007. Co-tracking using semi-supervised support vector machines. In ICCV.
-
(2007)
ICCV
-
-
Tang, F.1
Brennan, S.2
Zhao, Q.3
Tao, H.4
-
20
-
-
80053165996
-
Online semi-supervised learning on quantized graphs
-
Valko, M.; Kveton, B.; Huang, L.; and Ting, D. 2010. Online semi-supervised learning on quantized graphs. In UAI.
-
(2010)
UAI
-
-
Valko, M.1
Kveton, B.2
Huang, L.3
Ting, D.4
|