메뉴 건너뛰기




Volumn 1, Issue , 2011, Pages 362-367

OASIS: Online active semi-supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; BAYESIAN MODEL; BAYESIAN UPDATING; LABELED AND UNLABELED DATA; LEARNING MODELS; LEARNING SETTINGS; LIKELIHOOD FUNCTIONS; REAL-WORLD APPLICATION; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; SEQUENTIAL MONTE CARLO;

EID: 80055035242     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (35)

References (20)
  • 2
    • 51949086172 scopus 로고    scopus 로고
    • Semi-supervised classification by low density separation
    • Chapelle, O., and Zien, A. 2005. Semi-supervised classification by low density separation. In AISTAT 2005.
    • (2005) AISTAT 2005
    • Chapelle, O.1    Zien, A.2
  • 4
    • 84858729241 scopus 로고    scopus 로고
    • Adaptive regularization of weight vectors
    • Crammer, K.; Kulesza, A.; and Dredze, M. 2009. Adaptive regularization of weight vectors. In NIPS 22.
    • (2009) NIPS , vol.22
    • Crammer, K.1    Kulesza, A.2    Dredze, M.3
  • 5
    • 77951131231 scopus 로고    scopus 로고
    • A tutorial on particle filtering and smoothing: Fifteen years later
    • Crisan, D., and Rozovsky, B., eds., Oxford University Press
    • Doucet, A., and Johansen, A. M. 2009. A tutorial on particle filtering and smoothing: Fifteen years later. In Crisan, D., and Rozovsky, B., eds., Handbook of Nonlinear Filtering. Oxford University Press.
    • (2009) Handbook of Nonlinear Filtering
    • Doucet, A.1    Johansen, A.M.2
  • 7
    • 51749085814 scopus 로고    scopus 로고
    • An online semi-supervised active learning algorithm with self-organizing incremental neural network
    • Furao, S.; Sakurai, K.; Kamiya, Y.; and Hasegawa, O. 2007. An online semi-supervised active learning algorithm with self-organizing incremental neural network. In IJCNN.
    • (2007) IJCNN
    • Furao, S.1    Sakurai, K.2    Kamiya, Y.3    Hasegawa, O.4
  • 8
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman, A.; Jakulin, A.; Pittau, M. G.; and Su, Y.-S. 2008. A weakly informative default prior distribution for logistic and other regression models. Annals of Applied Statistics 2(4):1360-1383.
    • (2008) Annals of Applied Statistics , vol.2 , Issue.4 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3    Su, Y.-S.4
  • 10
    • 59549084072 scopus 로고    scopus 로고
    • Online manifold regularization: A new learning setting and empirical study
    • Goldberg, A. B.; Li, M.; and Zhu, X. 2008. Online manifold regularization: A new learning setting and empirical study. In ECML PKDD.
    • (2008) ECML PKDD
    • Goldberg, A.B.1    Li, M.2    Zhu, X.3
  • 11
    • 70350531007 scopus 로고    scopus 로고
    • Semi-supervised on-line boosting for robust tracking
    • Grabner, H.; Leistner, C.; and Bischof, H. 2008. Semi-supervised on-line boosting for robust tracking. In ECCV.
    • (2008) ECCV
    • Grabner, H.1    Leistner, C.2    Bischof, H.3
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.1
  • 13
    • 33646006173 scopus 로고    scopus 로고
    • Semi-supervised learning via Gaussian processes
    • Lawrence, N. D., and Jordan, M. I. 2004. Semi-supervised learning via Gaussian processes. In NIPS 17.
    • (2004) NIPS , vol.17
    • Lawrence, N.D.1    Jordan, M.I.2
  • 15
    • 80055026812 scopus 로고    scopus 로고
    • Noisy generalized binary search
    • Nowak, R. 2009. Noisy generalized binary search. In NIPS 22.
    • (2009) NIPS , vol.22
    • Nowak, R.1
  • 16
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • Rahimi, A., and Recht, B. 2007. Random features for large-scale kernel machines. In NIPS 20.
    • (2007) NIPS , vol.20
    • Rahimi, A.1    Recht, B.2
  • 17
    • 0037527978 scopus 로고    scopus 로고
    • A sequential Monte Carlo method for Bayesian analysis of massive datasets
    • Ridgeway, G., and Madigan, D. 2003. A sequential Monte Carlo method for Bayesian analysis of massive datasets. Journal of Data Mining and Knowledge Discovery 7(3):301-319.
    • (2003) Journal of Data Mining and Knowledge Discovery , vol.7 , Issue.3 , pp. 301-319
    • Ridgeway, G.1    Madigan, D.2
  • 18
    • 84970983203 scopus 로고    scopus 로고
    • Unlabeled data: Now it helps, now it doesn't
    • Singh, A.; Nowak, R.; and Zhu, X. 2008. Unlabeled data: Now it helps, now it doesn't. In NIPS 21.
    • (2008) NIPS , vol.21
    • Singh, A.1    Nowak, R.2    Zhu, X.3
  • 19
    • 50649099635 scopus 로고    scopus 로고
    • Co-tracking using semi-supervised support vector machines
    • Tang, F.; Brennan, S.; Zhao, Q.; and Tao, H. 2007. Co-tracking using semi-supervised support vector machines. In ICCV.
    • (2007) ICCV
    • Tang, F.1    Brennan, S.2    Zhao, Q.3    Tao, H.4
  • 20
    • 80053165996 scopus 로고    scopus 로고
    • Online semi-supervised learning on quantized graphs
    • Valko, M.; Kveton, B.; Huang, L.; and Ting, D. 2010. Online semi-supervised learning on quantized graphs. In UAI.
    • (2010) UAI
    • Valko, M.1    Kveton, B.2    Huang, L.3    Ting, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.