메뉴 건너뛰기




Volumn 22, Issue 2, 2013, Pages 92-101

Modeling of dissolved oxygen in river water using artificial intelligence techniques

Author keywords

Dissolved oxygen; Gene expression programming; Modeling; Neural networks; Neuro fuzzy

Indexed keywords

ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; DISCHARGE; DISSOLVED OXYGEN; GENE EXPRESSION; MODELING; PH; RIVER WATER; WATER TEMPERATURE;

EID: 84891110067     PISSN: 17262135     EISSN: 16848799     Source Type: Journal    
DOI: 10.3808/jei.201300248     Document Type: Article
Times cited : (62)

References (41)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology, I: Hydrologic applications
    • Amercan Society of Civil Engineers (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology
    • Amercan Society of Civil Engineers (ASCE) Task Committee on Application of Artificial Neural Networks in Hydrology. (2000). Artificial neural networks in hydrology, I: Hydrologic applications. J. Hydrol. Eng., 5(2), 124-137. http://dx.doi.org/10.1061/(ASCE) 1084-0699(2000)5:2(124)
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 2
    • 84868601226 scopus 로고    scopus 로고
    • Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado, USA
    • Ay, M., and Kisi, O. (2012). Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado, USA. J. Environ. Eng., 138(6), 654-662. http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000511
    • (2012) J. Environ. Eng. , vol.138 , Issue.6 , pp. 654-662
    • Ay, M.1    Kisi, O.2
  • 3
    • 81155141234 scopus 로고    scopus 로고
    • ANFIS-Based Approach for Predicting the Scour Depth at Culvert Outlets
    • Azamathulla, H.M., and Ghani, A.A. (2011). ANFIS-Based Approach for Predicting the Scour Depth at Culvert Outlets. J. Pipeline Syst. Eng. Pract., 2(1), 35-40. http://dx.doi.org/10.1061/(ASCE)PS.1949-1204.0000066
    • (2011) J. Pipeline Syst. Eng. Pract. , vol.2 , Issue.1 , pp. 35-40
    • Azamathulla, H.M.1    Ghani, A.A.2
  • 4
    • 33846847847 scopus 로고    scopus 로고
    • Monthly dam inflow forecasts using weather forecast information and neuro-fuzzy technique
    • Bae, D.H., Jeong, D.M., and Kim, G. (2007). Monthly dam inflow forecasts using weather forecast information and neuro-fuzzy technique. Hydrol. Sci. J., 52(1), 99-113. http://dx.doi.org/10.1623/hysj.52.1. 99
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.1 , pp. 99-113
    • Bae, D.H.1    Jeong, D.M.2    Kim, G.3
  • 5
    • 0035340711 scopus 로고    scopus 로고
    • Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang, F.J., and Chen, Y.C. (2001). Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol., 245, 153-164. http://dx.doi.org/10.1016/S0022-1694(01) 00350-X
    • (2001) J. Hydrol. , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 6
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of flow data by artificial neural networks
    • Cigizoglu, H.K. (2003). Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrol. Sci. J., 48(3), 349-361. http://dx.doi.org/10.1623/hysj.48.3.349.45288
    • (2003) Hydrol. Sci. J. , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 7
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson, W.C., and Wilby, R. (1998). An artificial neural network approach to rainfall-runoff modeling. Hydrol. Sci. J., 43(1), 47-66. http://dx.doi.org/10.1080/02626669809492102
    • (1998) Hydrol. Sci. J. , vol.43 , Issue.1 , pp. 47-66
    • Dawson, W.C.1    Wilby, R.2
  • 8
    • 77950516820 scopus 로고    scopus 로고
    • A hybrid neural netork and ARIMA model for water quality time series prediction
    • Faruk, D.O. (2010). A hybrid neural netork and ARIMA model for water quality time series prediction. Eng. Appl. Artificial Intell., 23, 586-594. http://dx.doi.org/10.1016/j.engappai.2009.09.015
    • (2010) Eng. Appl. Artificial Intell. , vol.23 , pp. 586-594
    • Faruk, D.O.1
  • 10
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: A new adaptive algorithm for solving problems
    • Ferreira, C. (2001b). Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst., 13(2), 87-129.
    • (2001) Complex Syst. , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 12
    • 32444435850 scopus 로고    scopus 로고
    • Using GP to determine Chezzy resistance coefficient in corrugated channels
    • Giustolisi, O. (2004). Using GP to determine Chezzy resistance coefficient in corrugated channels. J. Hydroinf., 157-173.
    • (2004) J. Hydroinf. , pp. 157-173
    • Giustolisi, O.1
  • 14
    • 85009570458 scopus 로고    scopus 로고
    • Velocity predictions in compound channels with vegetated flood plains using genetic programming
    • Harris, E. L, Babovic, V., and Falconer, R.A. (2003). Velocity predictions in compound channels with vegetated flood plains using genetic programming. Int. J. River Basin Manage., 1(2), 117-123. http:// dx.doi.org/10.1080/15715124.2003.9635198
    • (2003) Int. J. River Basin Manage. , vol.1 , Issue.2 , pp. 117-123
    • Harris, E.L.1    Babovic, V.2    Falconer, R.A.3
  • 15
  • 16
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J.S.R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Manag. Cyber., 23(3), 665-685. http://dx. doi.org/10.1109/21.256541
    • (1993) IEEE Trans. Syst. Manag. Cyber. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 18
    • 84883778840 scopus 로고    scopus 로고
    • Forecasting water level fluctuations of Urmieh lake using gene expression programming and adaptive neuro-fuzzy inference system
    • Karimi, S., Shiri, J., Kisi, O., and Makarynskyy, O. (2012). Forecasting water level fluctuations of Urmieh lake using gene expression programming and adaptive neuro-fuzzy inference system. Int. J. Ocean Clim. Syst., 3(2), 109-125. http://dx.doi.org/10.1260/1759-3131.3.2.109
    • (2012) Int. J. Ocean Clim. Syst. , vol.3 , Issue.2 , pp. 109-125
    • Karimi, S.1    Shiri, J.2    Kisi, O.3    Makarynskyy, O.4
  • 19
    • 33748933705 scopus 로고    scopus 로고
    • Daily pan evaporation modeling using a neuro-fuzzy computing technique
    • Kisi, O. (2006). Daily pan evaporation modeling using a neuro-fuzzy computing technique. J. Hydrol., 329, 636-646. http://dx.doi.org10. 1016/j.jhydrol.2006.03.015
    • (2006) J. Hydrol. , vol.329 , pp. 636-646
    • Kisi, O.1
  • 20
    • 57049168146 scopus 로고    scopus 로고
    • Modelling daily suspended sediment of rivers in Turkey using several data driven techniques
    • Kisi, O, Yuksel, I., and Dogan, E. (2008). Modelling daily suspended sediment of rivers in Turkey using several data driven techniques. Hydrol. Sci. J., 53(6), 1270-1285. http://dx.doi.org/10.1623/hysj.53. 6.1270
    • (2008) Hydrol. Sci. J. , vol.53 , Issue.6 , pp. 1270-1285
    • Kisi, O.1    Yuksel, I.2    Dogan, E.3
  • 21
    • 80053449485 scopus 로고    scopus 로고
    • Precipitation forecasting using waveletgenetic programming and wavelet-neuro-fuzzy conjunction models
    • Kisi, O., and Shiri, J. (2011). Precipitation forecasting using waveletgenetic programming and wavelet-neuro-fuzzy conjunction models. Water Resour. Manage., 25(13), 3135-3152. http://dx.doi.org/10. 1007/s11269-011-9849-3
    • (2011) Water Resour. Manage. , vol.25 , Issue.13 , pp. 3135-3152
    • Kisi, O.1    Shiri, J.2
  • 22
    • 84860608391 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations
    • Kisi, O., and Shiri, J. (2012a). Wavelet and neuro-fuzzy conjunction model for predicting water table depth fluctuations. Hydrol. Res., 43(3), 286-300.
    • (2012) Hydrol. Res. , vol.43 , Issue.3 , pp. 286-300
    • Kisi, O.1    Shiri, J.2
  • 23
    • 84859640789 scopus 로고    scopus 로고
    • River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques
    • Kisi, O., and Shiri, J. (2012b). River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques. Comput. Geosci., 43, 73-82. http://dx.doi. org/10.1016/j.cageo.2012.02.007
    • (2012) Comput. Geosci. , vol.43 , pp. 73-82
    • Kisi, O.1    Shiri, J.2
  • 24
    • 84870159777 scopus 로고    scopus 로고
    • Modeling rainfall-runoff process using soft computing techniques
    • Kisi, O., Shiri, J., and Tombul, M. (2013). Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci., 51,108-117. http://dx.doi.org/10.1016/j.cageo.2012.07.001
    • (2013) Comput. Geosci. , vol.51 , pp. 108-117
    • Kisi, O.1    Shiri, J.2    Tombul, M.3
  • 26
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • Legates, D.R., and McCabe, G.J. (1999). Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res., 35(1), 233-241. http://dx.doi.org/10.1029/ 1998WR900018
    • (1999) Water Resour. Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 27
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the preidiction of water quality parameters
    • Maier, H.R., and Dany, G.C. (1996). The use of artificial neural networks for the preidiction of water quality parameters. Water Resour. Res., 32(4), 1013-1022. http://dx.doi.org/10.1029/96WR03529
    • (1996) Water Resour. Res. , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dany, G.C.2
  • 28
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani, E.H., and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud., 7(1), 1-13. http://dx.doi.org/10.1016/S0020-7373(75)80002-2
    • (1975) Int. J. Man Mach. Stud. , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 29
    • 57949098440 scopus 로고    scopus 로고
    • Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique
    • Ozger, M., and Yildirim, G. (2009). Determining turbulent flow friction coefficient using adaptive neuro-fuzzy computing technique. Adv. Eng. Software, 40, 281-287. http://dx.doi.org/10.1016/j.adveng soft.2008.04.006
    • (2009) Adv. Eng. Software , vol.40 , pp. 281-287
    • Ozger, M.1    Yildirim, G.2
  • 30
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani, S., Liong, S.Y., and Tkalich, P. (2008). An ANN application for water quality forecasting. Mar. Pollut. Bull., 56, 1586-1597. Http://dx.doi.org/10.1016/j.marpolbul.2008.05.021
    • (2008) Mar. Pollut. Bull. , vol.56 , pp. 1586-1597
    • Palani, S.1    Liong, S.Y.2    Tkalich, P.3
  • 32
    • 77649190348 scopus 로고    scopus 로고
    • Neural network modeling of dissolved oxygen in the Gruza reservoir, Serbia
    • Rankovic, V., Radulovic, J., Radojevic, I., Ostojic, A., and Comic, A. (2010). Neural network modeling of dissolved oxygen in the Gruza reservoir, Serbia. Ecol. Model., 221, 1239-1244.
    • (2010) Ecol. Model. , vol.221 , pp. 1239-1244
    • Rankovic, V.1    Radulovic, J.2    Radojevic, I.3    Ostojic, A.4    Comic, A.5
  • 34
    • 78149414268 scopus 로고    scopus 로고
    • Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model
    • Shiri, J., and Kisi, O. (2010). Short-term and long-term streamflow forecasting using a wavelet and neuro-fuzzy conjunction model. J. Hydrol., 394(3-4), 486-493. http://dx.doi.org/10.1016/j.jhydrol.201 0. 10.008
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 486-493
    • Shiri, J.1    Kisi, O.2
  • 35
    • 80052542665 scopus 로고    scopus 로고
    • Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations
    • Shiri, J., and Kisi, O. (2011a). Comparison of genetic programming with neuro-fuzzy systems for predicting short-term water table depth fluctuations. Comput. Geosci., 37(10), 1692-1701. http://dx.doi.org/ 10.1016/j.cageo.2010.11.010
    • (2011) Comput. Geosci. , vol.37 , Issue.10 , pp. 1692-1701
    • Shiri, J.1    Kisi, O.2
  • 36
    • 79960111650 scopus 로고    scopus 로고
    • Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South Western Iran)
    • Shiri, J., and Kisi, O. (2011b). Application of artificial intelligence to estimate daily pan evaporation using available and estimated climatic data in the Khozestan Province (South Western Iran). J. Irrig. Drain. Eng., 137(7), 412-425. http://dx.doi.org/10.1061/(ASCE)IR. 1943-4774.0000315
    • (2011) J. Irrig. Drain. Eng. , vol.137 , Issue.7 , pp. 412-425
    • Shiri, J.1    Kisi, O.2
  • 37
    • 83755182713 scopus 로고    scopus 로고
    • Prediction of short term operational water levels using an adaptive neuro-fuzzy inference system
    • Shiri, J., Makarynskyy, O., Kisi, O., Dierickx, W., and Fakheri Fard, A. (2011a). Prediction of short term operational water levels using an adaptive neuro-fuzzy inference system. J. Waterway Port Coast. Ocean Eng., 137(6), 344-354. http://dx.doi.org/10.1061/(ASCE) WW.1943-5460.0000097
    • (2011) J. Waterway Port Coast. Ocean Eng. , vol.137 , Issue.6 , pp. 344-354
    • Shiri, J.1    Makarynskyy, O.2    Kisi, O.3    Dierickx, W.4    Fakheri Fard, A.5
  • 38
    • 82455186243 scopus 로고    scopus 로고
    • Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANN)
    • Shiri, J., Dierickx, W., Pour-Ali Baba, A., Neamati, S., and Ghorbani, M.A. (2011b). Estimating daily pan evaporation from climatic data of the State of Illinois, USA using adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANN). Hydrol. Res., 42(6), 491-502. http://dx.doi.org/10.2166/nh.2011.020
    • (2011) Hydrol. Res. , vol.42 , Issue.6 , pp. 491-502
    • Shiri, J.1    Dierickx, W.2    Pour-Ali Baba, A.3    Neamati, S.4    Ghorbani, M.A.5
  • 39
    • 84855193767 scopus 로고    scopus 로고
    • Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain)
    • Shiri, J., Kisi, O., Landeras, G., Lopez, J.J., Nazemi, A.H., and Stuyt, L.C.P.M. (2012). Daily reference evapotranspiration modeling by using genetic programming approach in the Basque Country (Northern Spain). J. Hydrol., 414-415, 302-316. http://dx.doi.org/10.101 6/j.jhydrol.2011.11.004
    • (2012) J. Hydrol. , vol.414-415 , pp. 302-316
    • Shiri, J.1    Kisi, O.2    Landeras, G.3    Lopez, J.J.4    Nazemi, A.H.5    Stuyt, L.C.P.M.6
  • 40
    • 60649118396 scopus 로고    scopus 로고
    • Artificial neural network modeling of the river water quality-A case study
    • Singh, K.P., Basant, A., Malik, A., and Jain, G. (2009). Artificial neural network modeling of the river water quality-A case study. Ecol. Model., 220, 888-895. http://dx.doi.org/10.1016/j.ecolmodel.2009. 01.004
    • (2009) Ecol. Model. , vol.220 , pp. 888-895
    • Singh, K.P.1    Basant, A.2    Malik, A.3    Jain, G.4
  • 41
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi, T., and Sugeno, M. (1985). Fuzzy identification of systems and its application to modeling and control. Trans. Syst. Man Cybernetics, 15(1), 116-132. http://dx.doi.org/10.1109/TSMC. 1985.6313
    • (1985) Trans. Syst. Man Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.