-
1
-
-
84867539048
-
A few useful things to know about machine learning
-
Domingos P. A few useful things to know about machine learning. Communications of the ACM 2012, 55(10):78-87. 10.1145/2347736.2347755.
-
(2012)
Communications of the ACM
, vol.55
, Issue.10
, pp. 78-87
-
-
Domingos, P.1
-
3
-
-
33749618778
-
Learning with drift detection
-
Springer, São Luis, Maranhão
-
Gama J., Medas P., Castillo G., Rodrigues P.P. Learning with drift detection. Proceedings of the 17th Brazilian Symposium on Artificial Intelligence 2004, vol. 3171:286-295. Springer, São Luis, Maranhão.
-
(2004)
Proceedings of the 17th Brazilian Symposium on Artificial Intelligence
, vol.3171
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.P.4
-
5
-
-
37749050180
-
Dynamic weighted majority. an ensemble method for drifting concepts
-
Kolter J.Z., Maloof M.A. Dynamic weighted majority. an ensemble method for drifting concepts. Journal of Machine Learning Research 2007, 8:2755-2790.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 2755-2790
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
6
-
-
85123650840
-
Detecting change in data streams
-
D. Kifer, S. Ben-David, J. Gehrke, Detecting change in data streams, in: Proceedings of the 13th International Conference on Very Large Data Bases, VLDB Endowment, 2004, pp. 180-191.
-
(2004)
Proceedings of the 13th International Conference on Very Large Data Bases, VLDB Endowment
, pp. 180-191
-
-
Kifer, D.1
Ben-David, S.2
Gehrke, J.3
-
7
-
-
80455127229
-
Robustness of change detection algorithms
-
Springer, Berlin, Heidelberg, J.A. Gama, E. Bradley, J. Hollmén (Eds.)
-
Dasu T., Krishnan S., Pomann G. Robustness of change detection algorithms. Advances in Intelligent Data Analysis, Lecture Notes in Computer Science 2011, 125-137. Springer, Berlin, Heidelberg. J.A. Gama, E. Bradley, J. Hollmén (Eds.).
-
(2011)
Advances in Intelligent Data Analysis, Lecture Notes in Computer Science
, pp. 125-137
-
-
Dasu, T.1
Krishnan, S.2
Pomann, G.3
-
8
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
doi:10.1145/956750.956778Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA
-
H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using ensemble classifiers, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2003, pp. 226-235.doi:10.1145/956750.956778.
-
(2003)
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
9
-
-
70350700681
-
New ensemble methods for evolving data streams
-
doi:10.1145/1557019.1557041 Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA
-
A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, R. Gavaldà, New ensemble methods for evolving data streams, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2009, pp. 139-148. doi:10.1145/1557019.1557041.
-
(2009)
, pp. 139-148
-
-
Bifet, A.1
Holmes, G.2
Pfahringer, B.3
Kirkby, R.4
Gavaldà, R.5
-
10
-
-
79958856814
-
Ensemble methods in machine learning
-
Springer, New York, R.A. Meyers (Ed.)
-
Džeroski S., Panov P., Ženko B. Ensemble methods in machine learning. Encyclopedia of Complexity and Systems Science 2009, 5317-5325. Springer, New York. R.A. Meyers (Ed.).
-
(2009)
Encyclopedia of Complexity and Systems Science
, pp. 5317-5325
-
-
Džeroski, S.1
Panov, P.2
Ženko, B.3
-
11
-
-
80053403826
-
Ensemble methods in machine learning
-
Proceedings of the First International Workshop on Multiple Classifier Systems, Springer-Verlag, London, UK
-
T.G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the First International Workshop on Multiple Classifier Systems, Springer-Verlag, London, UK, 2000, pp. 1-15.
-
(2000)
, pp. 1-15
-
-
Dietterich, T.G.1
-
12
-
-
58349087238
-
Combining online classification approaches for changing environments
-
International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
-
J. Rodríguez, L. Kuncheva, Combining online classification approaches for changing environments, in: International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2008, pp. 520-529.
-
(2008)
, pp. 520-529
-
-
Rodríguez, J.1
Kuncheva, L.2
-
13
-
-
0032645080
-
An empirical comparison of voting classification algorithms. bagging, boosting, and variants
-
Bauer E., Kohavi R. An empirical comparison of voting classification algorithms. bagging, boosting, and variants. Machine Learning 1999, 36(1-2):105-139. 10.1023/A:1007515423169.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
15
-
-
11944258430
-
To combine or not to combine. selecting among forecasts and their combinations
-
Hibon M., Evgeniou T. To combine or not to combine. selecting among forecasts and their combinations. International Journal of Forecasting 2005, 21(1):15-24. 10.1016/j.ijforecast.2004.05.002.
-
(2005)
International Journal of Forecasting
, vol.21
, Issue.1
, pp. 15-24
-
-
Hibon, M.1
Evgeniou, T.2
-
16
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
Saso D., Ženko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 2004, 54:255-273. 10.1023/B:MACH.0000015881.36452.6e.
-
(2004)
Machine Learning
, vol.54
, pp. 255-273
-
-
Saso, D.1
Ženko, B.2
-
17
-
-
49749086726
-
Cross-disciplinary perspectives on meta-learning for algorithm selection
-
Smith-Miles K.A. Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys 2008, 41(1):1-25. http://dx.doi.acm.org/10.1145/1456650.1456656.
-
(2008)
ACM Computing Surveys
, vol.41
, Issue.1
, pp. 1-25
-
-
Smith-Miles, K.A.1
-
19
-
-
84873190999
-
Meta-learning for periodic algorithms selection in time-changing data
-
doi:10.1109/SBRN.2012.50 Proceedings of the Brazilian Symposium on Neural Networks, IEEE Computer Society
-
A.L.D. Rossi, A.C.P.L.F. de Carvalho, C. Soares, Meta-learning for periodic algorithms selection in time-changing data, in: Proceedings of the Brazilian Symposium on Neural Networks, IEEE Computer Society, 2012, pp. 7-12. doi:10.1109/SBRN.2012.50.
-
(2012)
, pp. 7-12
-
-
Rossi, A.L.D.1
de Carvalho, A.C.P.L.F.2
Soares, C.3
-
21
-
-
1642379397
-
Introduction to the special issue on meta-learning
-
Giraud-Carrier C., Vilalta R., Brazdil P. Introduction to the special issue on meta-learning. Machine Learning 2004, 54(3):187-193. http://dx.doi.org/10.1023/B:MACH.0000015878.60765.42.
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 187-193
-
-
Giraud-Carrier, C.1
Vilalta, R.2
Brazdil, P.3
-
22
-
-
0036791948
-
A perspective view and survey of meta-learning
-
Vilalta R., Drissi Y. A perspective view and survey of meta-learning. Artificial Intelligent Review 2002, 18(2):77-95. http://dx.doi.org/10.1023/A:1019956318069.
-
(2002)
Artificial Intelligent Review
, vol.18
, Issue.2
, pp. 77-95
-
-
Vilalta, R.1
Drissi, Y.2
-
23
-
-
48849092230
-
Meta-learning, model selection, and example selection in machine learning domains with concept drift
-
J. Furnkranz, G. Grieser (Eds.), Proceedings of the Annual Workshop of the Special Interest Group on Machine Learning, Knowledge Discovery, and Data Mining (FGML-2005) of the German Computer Science Society Learning - Knowledge Discovery - Adaptivity (LWA-2005)
-
R. Klinkenberg, Meta-learning, model selection, and example selection in machine learning domains with concept drift, in: J. Furnkranz, G. Grieser (Eds.), Proceedings of the Annual Workshop of the Special Interest Group on Machine Learning, Knowledge Discovery, and Data Mining (FGML-2005) of the German Computer Science Society Learning - Knowledge Discovery - Adaptivity (LWA-2005), 2005, pp. 164-171.
-
(2005)
, pp. 164-171
-
-
Klinkenberg, R.1
-
24
-
-
37449029679
-
Online classification of nonstationary data streams
-
Last M. Online classification of nonstationary data streams. Intelligent Data Analysis 2002, 6(2):129-147.
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.2
, pp. 129-147
-
-
Last, M.1
-
25
-
-
0031164523
-
Tracking context changes through meta-learning
-
Widmer G. Tracking context changes through meta-learning. Machine Learning 1997, 27(3):259-286. http://dx.doi.org/10.1023/A:1007365809034.
-
(1997)
Machine Learning
, vol.27
, Issue.3
, pp. 259-286
-
-
Widmer, G.1
-
27
-
-
80455168548
-
Learning about the learning process
-
Proceedings of the 10th International Conference on Advances in Intelligent Data Analysis, Springer-Verlag, Berlin, Heidelberg
-
J. Gama, P. Kosina, Learning about the learning process, in: Proceedings of the 10th International Conference on Advances in Intelligent Data Analysis, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 162-172.
-
(2011)
, pp. 162-172
-
-
Gama, J.1
Kosina, P.2
-
28
-
-
79959292611
-
Learning recurring concepts from data streams with a context-aware ensemble
-
doi:10.1145/1982185.1982403
-
J.B. Gomes, E. Menasalvas, P.A.C. Sousa, Learning recurring concepts from data streams with a context-aware ensemble, in: Proceedings of the ACM Symposium on Applied Computing, ACM, New York, NY, USA, 2011, pp. 994-999. doi:10.1145/1982185.1982403.
-
(2011)
Proceedings of the ACM Symposium on Applied Computing, ACM, New York, NY, USA
, pp. 994-999
-
-
Gomes, J.B.1
Menasalvas, E.2
Sousa, P.A.C.3
-
29
-
-
84888394031
-
Next challenges for adaptive learning systems
-
Žliobaite I., Bifet A., Gaber M., Gabrys B., Gama J., Minku L., Musial K. Next challenges for adaptive learning systems. SIGKDD Explorations 2012, 14(1):48-55. 10.1145/2408736.2408746.
-
(2012)
SIGKDD Explorations
, vol.14
, Issue.1
, pp. 48-55
-
-
Žliobaite, I.1
Bifet, A.2
Gaber, M.3
Gabrys, B.4
Gama, J.5
Minku, L.6
Musial, K.7
-
30
-
-
30044434365
-
Incremental learning of linear model trees
-
Potts D., Sammut C. Incremental learning of linear model trees. Machine Learning 2005, 61:5-48. http://dx.doi.org/10.1007/s10994-005-1121-8.
-
(2005)
Machine Learning
, vol.61
, pp. 5-48
-
-
Potts, D.1
Sammut, C.2
-
33
-
-
70350664414
-
Issues in evaluation of stream learning algorithms
-
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA doi:10.1145/1557019.1557060
-
J. Gama, R. Sebastião, P.P. Rodrigues, Issues in evaluation of stream learning algorithms, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2009, pp. 329-338. doi:10.1145/1557019.1557060.
-
(2009)
, pp. 329-338
-
-
Gama, J.1
Sebastião, R.2
Rodrigues, P.P.3
-
34
-
-
66149178152
-
Learning Rankings of Learning Algorithms
-
Recommendation of Algorithms with Meta-learning, Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
-
C. Soares, Learning Rankings of Learning Algorithms: Recommendation of Algorithms with Meta-learning, Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Porto, Portugal, 2004.
-
(2004)
-
-
Soares, C.1
-
35
-
-
10244243684
-
Meta-learning approaches to selecting time series models
-
Prudêncio R.B.C., Ludermir T.B. Meta-learning approaches to selecting time series models. Neurocomputing 2004, 61:121-137.
-
(2004)
Neurocomputing
, vol.61
, pp. 121-137
-
-
Prudêncio, R.B.C.1
Ludermir, T.B.2
-
36
-
-
1642276856
-
A meta-learning method to select the kernel width in support vector regression
-
Soares C., Brazdil P.B., Kuba P. A meta-learning method to select the kernel width in support vector regression. Machine Learning 2004, 54:195-209. 10.1023/B:MACH.0000015879.28004.9b.
-
(2004)
Machine Learning
, vol.54
, pp. 195-209
-
-
Soares, C.1
Brazdil, P.B.2
Kuba, P.3
-
37
-
-
84861617363
-
An extensive experimental comparison of methods for multi-label learning
-
Madjarov G., Kocev D., Gjorgjevikj D., Deroski S. An extensive experimental comparison of methods for multi-label learning. Pattern Recognition 2012, 45(9):3084-3104. 10.1016/j.patcog.2012.03.004.
-
(2012)
Pattern Recognition
, vol.45
, Issue.9
, pp. 3084-3104
-
-
Madjarov, G.1
Kocev, D.2
Gjorgjevikj, D.3
Deroski, S.4
-
38
-
-
84888423407
-
-
Travel Time Prediction for the Planning of Mass Transit Companies: A Machine Learning Approach, Ph.D. Thesis, Faculty of Engineering of University of Porto
-
J.P.C.L.M. Moreira, Travel Time Prediction for the Planning of Mass Transit Companies: A Machine Learning Approach, Ph.D. Thesis, Faculty of Engineering of University of Porto, 2008.
-
(2008)
-
-
Moreira, J.P.C.L.M.1
-
39
-
-
33749394792
-
Splice-2 Comparative Evaluation
-
Electricity Pricing, Technical Report 9905, School of Computer Science and Engineering, University of New South Wales
-
M. Harries, Splice-2 Comparative Evaluation: Electricity Pricing, Technical Report 9905, School of Computer Science and Engineering, University of New South Wales, 1999.
-
(1999)
-
-
Harries, M.1
-
40
-
-
33747421006
-
Performance evaluation of an adaptive travel time prediction model
-
doi:10.1109/ITSC.2005.1520187, in: Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE
-
S. Bajwa, E. Chung, M. Kuwahara, Performance evaluation of an adaptive travel time prediction model, in: Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE, 2005, pp. 1000-1005. doi:10.1109/ITSC.2005.1520187.
-
(2005)
, pp. 1000-1005
-
-
Bajwa, S.1
Chung, E.2
Kuwahara, M.3
-
42
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
43
-
-
0003798635
-
-
Cambridge University Press, New York, NY, USA
-
Cristianini N., Shawe-Taylor J. An Introduction to Support Vector Machines. And Other Kernel-based Learning Methods 2000, Cambridge University Press, New York, NY, USA.
-
(2000)
An Introduction to Support Vector Machines. And Other Kernel-based Learning Methods
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
44
-
-
0003802343
-
-
Chapman & Hall (Wadsworth, Inc.)
-
Breiman L., Friedman J., Olshen R., Stone C. Classification and Regression Trees 1984, Chapman & Hall (Wadsworth, Inc.).
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
46
-
-
0002432565
-
Multivariate adaptive regression splines
-
Friedman J.H. Multivariate adaptive regression splines. Annals of Statistics 1991, 19(1):1-67.
-
(1991)
Annals of Statistics
, vol.19
, Issue.1
, pp. 1-67
-
-
Friedman, J.H.1
-
47
-
-
84888396605
-
-
R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL 〈〉
-
R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013. URL 〈〉. http://www.R-project.org/.
-
(2013)
-
-
-
48
-
-
34250744208
-
An empirical comparison of supervised learning algorithms
-
doi:10.1145/1143844.1143865 Proceedings of the 23rd International Conference on Machine Learning, ACM, New York, NY, USA
-
R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in: Proceedings of the 23rd International Conference on Machine Learning, ACM, New York, NY, USA, 2006, pp. 161-168. doi:10.1145/1143844.1143865.
-
(2006)
, pp. 161-168
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
49
-
-
84888425813
-
Algorithm selection for the graph coloring problem
-
Proceedings of the Learning and Intelligent Optimization Conference, Springer, to appear
-
N. Musliu, M. Schwengerer, Algorithm selection for the graph coloring problem, in: Proceedings of the Learning and Intelligent Optimization Conference, Springer, to appear.
-
-
-
Musliu, N.1
Schwengerer, M.2
-
50
-
-
82455210873
-
Combining meta-learning and search techniques to select parameters for support vector machines
-
Gomes T.A., Prudêncio R.B., Soares C., Rossi A.L., Carvalho A. Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 2012, 75(1):3-13. 10.1016/j.neucom.2011.07.005.
-
(2012)
Neurocomputing
, vol.75
, Issue.1
, pp. 3-13
-
-
Gomes, T.A.1
Prudêncio, R.B.2
Soares, C.3
Rossi, A.L.4
Carvalho, A.5
-
52
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista G.E.A.P.A., Prati R.C., Monard M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations Newsletter 2004, 6(1):20-29. 10.1145/1007730.1007735.
-
(2004)
SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
53
-
-
0035315158
-
Automatic identification of time series features for rule-based forecasting
-
Adya M., Collopy F., Armstrong J.S., Kennedy M. Automatic identification of time series features for rule-based forecasting. International Journal of Forecasting 2001, 17(2):143-157. 10.1016/S0169-2070(01)00079-6.
-
(2001)
International Journal of Forecasting
, vol.17
, Issue.2
, pp. 143-157
-
-
Adya, M.1
Collopy, F.2
Armstrong, J.S.3
Kennedy, M.4
-
54
-
-
67349267030
-
Rule induction for forecasting method selection. meta-learning the characteristics of univariate time series
-
Wang X., Smith-Miles K., Hyndman R. Rule induction for forecasting method selection. meta-learning the characteristics of univariate time series. Neurocomputing 2009, 72(10-12):2581-2594. http://dx.doi.org/10.1016/j.neucom.2008.10.017.
-
(2009)
Neurocomputing
, vol.72
, Issue.10-12
, pp. 2581-2594
-
-
Wang, X.1
Smith-Miles, K.2
Hyndman, R.3
-
55
-
-
77952545391
-
Meta-learning for time series forecasting and forecast combination
-
Lemke C., Gabrys B. Meta-learning for time series forecasting and forecast combination. Neurocomputing 2010, 73(10-12):2006-2016. 10.1016/j.neucom.2009.09.020.
-
(2010)
Neurocomputing
, vol.73
, Issue.10-12
, pp. 2006-2016
-
-
Lemke, C.1
Gabrys, B.2
-
56
-
-
84871245760
-
Ensemble approaches for regression. a survey
-
10:1-10:40
-
Mendes-Moreira J., Soares C., Jorge A.M., Sousa J.F.D. Ensemble approaches for regression. a survey. ACM Computing Surveys 2012, 45(1). 10:1-10:40. 10.1145/2379776.2379786.
-
(2012)
ACM Computing Surveys
, vol.45
, Issue.1
-
-
Mendes-Moreira, J.1
Soares, C.2
Jorge, A.M.3
Sousa, J.F.D.4
|