메뉴 건너뛰기




Volumn 127, Issue , 2014, Pages 52-64

MetaStream: A meta-learning based method for periodic algorithm selection in time-changing data

Author keywords

Algorithm selection; Data streams; Meta learning

Indexed keywords

ALGORITHM SELECTION; APPROPRIATE MODELS; DATA STREAM; MACHINE LEARNING COMMUNITIES; METALEARNING; PERIODIC ALGORITHM; REGRESSION MODEL; REGRESSION PROBLEM;

EID: 84888400212     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.05.048     Document Type: Article
Times cited : (79)

References (56)
  • 1
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos P. A few useful things to know about machine learning. Communications of the ACM 2012, 55(10):78-87. 10.1145/2347736.2347755.
    • (2012) Communications of the ACM , vol.55 , Issue.10 , pp. 78-87
    • Domingos, P.1
  • 4
    • 84873203642 scopus 로고    scopus 로고
    • Knowledge discovery in data streams with regression tree methods
    • Alberg D., Last M., Kandel A. Knowledge discovery in data streams with regression tree methods. WIREs. Data Mining and Knowledge Discovery 2012, 2(1):69-78. 10.1002/widm.51.
    • (2012) WIREs. Data Mining and Knowledge Discovery , vol.2 , Issue.1 , pp. 69-78
    • Alberg, D.1    Last, M.2    Kandel, A.3
  • 5
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority. an ensemble method for drifting concepts
    • Kolter J.Z., Maloof M.A. Dynamic weighted majority. an ensemble method for drifting concepts. Journal of Machine Learning Research 2007, 8:2755-2790.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 8
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • doi:10.1145/956750.956778Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA
    • H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using ensemble classifiers, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2003, pp. 226-235.doi:10.1145/956750.956778.
    • (2003) , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 9
    • 70350700681 scopus 로고    scopus 로고
    • New ensemble methods for evolving data streams
    • doi:10.1145/1557019.1557041 Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA
    • A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, R. Gavaldà, New ensemble methods for evolving data streams, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2009, pp. 139-148. doi:10.1145/1557019.1557041.
    • (2009) , pp. 139-148
    • Bifet, A.1    Holmes, G.2    Pfahringer, B.3    Kirkby, R.4    Gavaldà, R.5
  • 11
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Proceedings of the First International Workshop on Multiple Classifier Systems, Springer-Verlag, London, UK
    • T.G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the First International Workshop on Multiple Classifier Systems, Springer-Verlag, London, UK, 2000, pp. 1-15.
    • (2000) , pp. 1-15
    • Dietterich, T.G.1
  • 12
    • 58349087238 scopus 로고    scopus 로고
    • Combining online classification approaches for changing environments
    • International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • J. Rodríguez, L. Kuncheva, Combining online classification approaches for changing environments, in: International Workshop on Structural, Syntactic, and Statistical Pattern Recognition, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2008, pp. 520-529.
    • (2008) , pp. 520-529
    • Rodríguez, J.1    Kuncheva, L.2
  • 13
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms. bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms. bagging, boosting, and variants. Machine Learning 1999, 36(1-2):105-139. 10.1023/A:1007515423169.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 15
    • 11944258430 scopus 로고    scopus 로고
    • To combine or not to combine. selecting among forecasts and their combinations
    • Hibon M., Evgeniou T. To combine or not to combine. selecting among forecasts and their combinations. International Journal of Forecasting 2005, 21(1):15-24. 10.1016/j.ijforecast.2004.05.002.
    • (2005) International Journal of Forecasting , vol.21 , Issue.1 , pp. 15-24
    • Hibon, M.1    Evgeniou, T.2
  • 16
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Saso D., Ženko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 2004, 54:255-273. 10.1023/B:MACH.0000015881.36452.6e.
    • (2004) Machine Learning , vol.54 , pp. 255-273
    • Saso, D.1    Ženko, B.2
  • 17
    • 49749086726 scopus 로고    scopus 로고
    • Cross-disciplinary perspectives on meta-learning for algorithm selection
    • Smith-Miles K.A. Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys 2008, 41(1):1-25. http://dx.doi.acm.org/10.1145/1456650.1456656.
    • (2008) ACM Computing Surveys , vol.41 , Issue.1 , pp. 1-25
    • Smith-Miles, K.A.1
  • 19
    • 84873190999 scopus 로고    scopus 로고
    • Meta-learning for periodic algorithms selection in time-changing data
    • doi:10.1109/SBRN.2012.50 Proceedings of the Brazilian Symposium on Neural Networks, IEEE Computer Society
    • A.L.D. Rossi, A.C.P.L.F. de Carvalho, C. Soares, Meta-learning for periodic algorithms selection in time-changing data, in: Proceedings of the Brazilian Symposium on Neural Networks, IEEE Computer Society, 2012, pp. 7-12. doi:10.1109/SBRN.2012.50.
    • (2012) , pp. 7-12
    • Rossi, A.L.D.1    de Carvalho, A.C.P.L.F.2    Soares, C.3
  • 21
    • 1642379397 scopus 로고    scopus 로고
    • Introduction to the special issue on meta-learning
    • Giraud-Carrier C., Vilalta R., Brazdil P. Introduction to the special issue on meta-learning. Machine Learning 2004, 54(3):187-193. http://dx.doi.org/10.1023/B:MACH.0000015878.60765.42.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 187-193
    • Giraud-Carrier, C.1    Vilalta, R.2    Brazdil, P.3
  • 22
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of meta-learning
    • Vilalta R., Drissi Y. A perspective view and survey of meta-learning. Artificial Intelligent Review 2002, 18(2):77-95. http://dx.doi.org/10.1023/A:1019956318069.
    • (2002) Artificial Intelligent Review , vol.18 , Issue.2 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 23
    • 48849092230 scopus 로고    scopus 로고
    • Meta-learning, model selection, and example selection in machine learning domains with concept drift
    • J. Furnkranz, G. Grieser (Eds.), Proceedings of the Annual Workshop of the Special Interest Group on Machine Learning, Knowledge Discovery, and Data Mining (FGML-2005) of the German Computer Science Society Learning - Knowledge Discovery - Adaptivity (LWA-2005)
    • R. Klinkenberg, Meta-learning, model selection, and example selection in machine learning domains with concept drift, in: J. Furnkranz, G. Grieser (Eds.), Proceedings of the Annual Workshop of the Special Interest Group on Machine Learning, Knowledge Discovery, and Data Mining (FGML-2005) of the German Computer Science Society Learning - Knowledge Discovery - Adaptivity (LWA-2005), 2005, pp. 164-171.
    • (2005) , pp. 164-171
    • Klinkenberg, R.1
  • 24
    • 37449029679 scopus 로고    scopus 로고
    • Online classification of nonstationary data streams
    • Last M. Online classification of nonstationary data streams. Intelligent Data Analysis 2002, 6(2):129-147.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.2 , pp. 129-147
    • Last, M.1
  • 25
    • 0031164523 scopus 로고    scopus 로고
    • Tracking context changes through meta-learning
    • Widmer G. Tracking context changes through meta-learning. Machine Learning 1997, 27(3):259-286. http://dx.doi.org/10.1023/A:1007365809034.
    • (1997) Machine Learning , vol.27 , Issue.3 , pp. 259-286
    • Widmer, G.1
  • 27
    • 80455168548 scopus 로고    scopus 로고
    • Learning about the learning process
    • Proceedings of the 10th International Conference on Advances in Intelligent Data Analysis, Springer-Verlag, Berlin, Heidelberg
    • J. Gama, P. Kosina, Learning about the learning process, in: Proceedings of the 10th International Conference on Advances in Intelligent Data Analysis, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 162-172.
    • (2011) , pp. 162-172
    • Gama, J.1    Kosina, P.2
  • 30
    • 30044434365 scopus 로고    scopus 로고
    • Incremental learning of linear model trees
    • Potts D., Sammut C. Incremental learning of linear model trees. Machine Learning 2005, 61:5-48. http://dx.doi.org/10.1007/s10994-005-1121-8.
    • (2005) Machine Learning , vol.61 , pp. 5-48
    • Potts, D.1    Sammut, C.2
  • 33
    • 70350664414 scopus 로고    scopus 로고
    • Issues in evaluation of stream learning algorithms
    • Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA doi:10.1145/1557019.1557060
    • J. Gama, R. Sebastião, P.P. Rodrigues, Issues in evaluation of stream learning algorithms, in: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2009, pp. 329-338. doi:10.1145/1557019.1557060.
    • (2009) , pp. 329-338
    • Gama, J.1    Sebastião, R.2    Rodrigues, P.P.3
  • 34
    • 66149178152 scopus 로고    scopus 로고
    • Learning Rankings of Learning Algorithms
    • Recommendation of Algorithms with Meta-learning, Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
    • C. Soares, Learning Rankings of Learning Algorithms: Recommendation of Algorithms with Meta-learning, Ph.D. Thesis, Faculdade de Ciências da Universidade do Porto, Porto, Portugal, 2004.
    • (2004)
    • Soares, C.1
  • 35
    • 10244243684 scopus 로고    scopus 로고
    • Meta-learning approaches to selecting time series models
    • Prudêncio R.B.C., Ludermir T.B. Meta-learning approaches to selecting time series models. Neurocomputing 2004, 61:121-137.
    • (2004) Neurocomputing , vol.61 , pp. 121-137
    • Prudêncio, R.B.C.1    Ludermir, T.B.2
  • 36
    • 1642276856 scopus 로고    scopus 로고
    • A meta-learning method to select the kernel width in support vector regression
    • Soares C., Brazdil P.B., Kuba P. A meta-learning method to select the kernel width in support vector regression. Machine Learning 2004, 54:195-209. 10.1023/B:MACH.0000015879.28004.9b.
    • (2004) Machine Learning , vol.54 , pp. 195-209
    • Soares, C.1    Brazdil, P.B.2    Kuba, P.3
  • 37
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • Madjarov G., Kocev D., Gjorgjevikj D., Deroski S. An extensive experimental comparison of methods for multi-label learning. Pattern Recognition 2012, 45(9):3084-3104. 10.1016/j.patcog.2012.03.004.
    • (2012) Pattern Recognition , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Deroski, S.4
  • 38
    • 84888423407 scopus 로고    scopus 로고
    • Travel Time Prediction for the Planning of Mass Transit Companies: A Machine Learning Approach, Ph.D. Thesis, Faculty of Engineering of University of Porto
    • J.P.C.L.M. Moreira, Travel Time Prediction for the Planning of Mass Transit Companies: A Machine Learning Approach, Ph.D. Thesis, Faculty of Engineering of University of Porto, 2008.
    • (2008)
    • Moreira, J.P.C.L.M.1
  • 39
    • 33749394792 scopus 로고    scopus 로고
    • Splice-2 Comparative Evaluation
    • Electricity Pricing, Technical Report 9905, School of Computer Science and Engineering, University of New South Wales
    • M. Harries, Splice-2 Comparative Evaluation: Electricity Pricing, Technical Report 9905, School of Computer Science and Engineering, University of New South Wales, 1999.
    • (1999)
    • Harries, M.1
  • 40
    • 33747421006 scopus 로고    scopus 로고
    • Performance evaluation of an adaptive travel time prediction model
    • doi:10.1109/ITSC.2005.1520187, in: Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE
    • S. Bajwa, E. Chung, M. Kuwahara, Performance evaluation of an adaptive travel time prediction model, in: Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE, 2005, pp. 1000-1005. doi:10.1109/ITSC.2005.1520187.
    • (2005) , pp. 1000-1005
    • Bajwa, S.1    Chung, E.2    Kuwahara, M.3
  • 42
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 46
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman J.H. Multivariate adaptive regression splines. Annals of Statistics 1991, 19(1):1-67.
    • (1991) Annals of Statistics , vol.19 , Issue.1 , pp. 1-67
    • Friedman, J.H.1
  • 47
    • 84888396605 scopus 로고    scopus 로고
    • R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, URL 〈〉
    • R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2013. URL 〈〉. http://www.R-project.org/.
    • (2013)
  • 48
    • 34250744208 scopus 로고    scopus 로고
    • An empirical comparison of supervised learning algorithms
    • doi:10.1145/1143844.1143865 Proceedings of the 23rd International Conference on Machine Learning, ACM, New York, NY, USA
    • R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in: Proceedings of the 23rd International Conference on Machine Learning, ACM, New York, NY, USA, 2006, pp. 161-168. doi:10.1145/1143844.1143865.
    • (2006) , pp. 161-168
    • Caruana, R.1    Niculescu-Mizil, A.2
  • 49
    • 84888425813 scopus 로고    scopus 로고
    • Algorithm selection for the graph coloring problem
    • Proceedings of the Learning and Intelligent Optimization Conference, Springer, to appear
    • N. Musliu, M. Schwengerer, Algorithm selection for the graph coloring problem, in: Proceedings of the Learning and Intelligent Optimization Conference, Springer, to appear.
    • Musliu, N.1    Schwengerer, M.2
  • 50
    • 82455210873 scopus 로고    scopus 로고
    • Combining meta-learning and search techniques to select parameters for support vector machines
    • Gomes T.A., Prudêncio R.B., Soares C., Rossi A.L., Carvalho A. Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 2012, 75(1):3-13. 10.1016/j.neucom.2011.07.005.
    • (2012) Neurocomputing , vol.75 , Issue.1 , pp. 3-13
    • Gomes, T.A.1    Prudêncio, R.B.2    Soares, C.3    Rossi, A.L.4    Carvalho, A.5
  • 52
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista G.E.A.P.A., Prati R.C., Monard M.C. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations Newsletter 2004, 6(1):20-29. 10.1145/1007730.1007735.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 53
    • 0035315158 scopus 로고    scopus 로고
    • Automatic identification of time series features for rule-based forecasting
    • Adya M., Collopy F., Armstrong J.S., Kennedy M. Automatic identification of time series features for rule-based forecasting. International Journal of Forecasting 2001, 17(2):143-157. 10.1016/S0169-2070(01)00079-6.
    • (2001) International Journal of Forecasting , vol.17 , Issue.2 , pp. 143-157
    • Adya, M.1    Collopy, F.2    Armstrong, J.S.3    Kennedy, M.4
  • 54
    • 67349267030 scopus 로고    scopus 로고
    • Rule induction for forecasting method selection. meta-learning the characteristics of univariate time series
    • Wang X., Smith-Miles K., Hyndman R. Rule induction for forecasting method selection. meta-learning the characteristics of univariate time series. Neurocomputing 2009, 72(10-12):2581-2594. http://dx.doi.org/10.1016/j.neucom.2008.10.017.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2581-2594
    • Wang, X.1    Smith-Miles, K.2    Hyndman, R.3
  • 55
    • 77952545391 scopus 로고    scopus 로고
    • Meta-learning for time series forecasting and forecast combination
    • Lemke C., Gabrys B. Meta-learning for time series forecasting and forecast combination. Neurocomputing 2010, 73(10-12):2006-2016. 10.1016/j.neucom.2009.09.020.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 2006-2016
    • Lemke, C.1    Gabrys, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.