메뉴 건너뛰기




Volumn , Issue , 2012, Pages 7-12

Meta-learning for periodic algorithm selection in time-changing data

Author keywords

Learning algorithm selection; Meta learning; Time changing data

Indexed keywords

ALGORITHM SELECTION; DATA CHUNKS; DATA DISTRIBUTION; DATA SETS; DIFFERENT DISTRIBUTIONS; META-CLASSIFIERS; META-LEARNING APPROACH; METALEARNING; PERIODIC ALGORITHM; PREDICTIVE PERFORMANCE; REAL-WORLD APPLICATION; TIME-CHANGING DATA; TRAVEL TIME PREDICTION; UNLABELED DATA;

EID: 84873190999     PISSN: 15224899     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SBRN.2012.50     Document Type: Conference Paper
Times cited : (14)

References (22)
  • 2
    • 84873203642 scopus 로고    scopus 로고
    • Knowledge discovery in data streams with regression tree methods
    • D. Alberg, M. Last, and A. Kandel, "Knowledge discovery in data streams with regression tree methods," WIREs: Data Mining and Knowledge Discovery, vol. 2, no. 1, pp. 69-78, 2012.
    • (2012) WIREs: Data Mining and Knowledge Discovery , vol.2 , Issue.1 , pp. 69-78
    • Alberg, D.1    Last, M.2    Kandel, A.3
  • 3
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • J. Z. Kolter and M. A. Maloof, "Dynamic weighted majority: An ensemble method for drifting concepts," Journal of Machine Learning Research, vol. 8, pp. 2755-2790, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 10
    • 1642379397 scopus 로고    scopus 로고
    • Introduction to the special issue on meta-learning
    • C. Giraud-Carrier, R. Vilalta, and P. Brazdil, "Introduction to the special issue on meta-learning," Machine Learning, vol. 54, no. 3, pp. 187-193, 2004.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 187-193
    • Giraud-Carrier, C.1    Vilalta, R.2    Brazdil, P.3
  • 11
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of metalearning
    • R. Vilalta and Y. Drissi, "A perspective view and survey of metalearning," Artificial Intelligent Review, vol. 18, no. 2, pp. 77-95, 2002.
    • (2002) Artificial Intelligent Review , vol.18 , Issue.2 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 13
    • 0031164523 scopus 로고    scopus 로고
    • Tracking Context Changes through Meta-Learning
    • G. Widmer, "Tracking context changes through meta-learning," Machine Learning, vol. 27, no. 3, pp. 259-286, 1997. (Pubitemid 127510031)
    • (1997) Machine Learning , vol.27 , Issue.3 , pp. 259-286
    • Widmer, G.1
  • 15
    • 33747421006 scopus 로고    scopus 로고
    • Performance evaluation of an adaptive travel time prediction model
    • DOI 10.1109/ITSC.2005.1520187, 1520187, ITSC'05: 2005 IEEE Intelligent Conference on Transportation Systems, Proceedings
    • S. Bajwa, E. Chung, and M. Kuwahara, "Performance evaluation of an adaptive travel time prediction model," in Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE, sept. 2005, pp. 1000-1005. (Pubitemid 44250337)
    • (2005) IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC , vol.2005 , pp. 1000-1005
    • Bajwa, S.U.I.1    Chung, E.2    Kuwahara, M.3
  • 17
    • 30044434365 scopus 로고    scopus 로고
    • Incremental learning of linear model trees
    • DOI 10.1007/s10994-005-1121-8
    • D. Potts and C. Sammut, "Incremental learning of linear model trees," Machine Learning, vol. 61, pp. 5-48, 2005. (Pubitemid 43049361)
    • (2005) Machine Learning , vol.61 , Issue.1-3 , pp. 5-48
    • Potts, D.1    Sammut, C.2
  • 18
    • 79960103750 scopus 로고    scopus 로고
    • Learning model trees from evolving data streams
    • Jul
    • E. Ikonomovska, J. a. Gama, and S. Dzeroski, "Learning model trees from evolving data streams," Data Min. Knowl. Discov., vol. 23, no. 1, pp. 128-168, Jul. 2011.
    • (2011) Data Min. Knowl. Discov. , vol.23 , Issue.1 , pp. 128-168
    • Ikonomovska, E.1    Gama J, A.2    Dzeroski, S.3
  • 21
    • 79951480123 scopus 로고    scopus 로고
    • R Development Core Team , R Foundation for Statistical Computing, Vienna, Austria, , ISBN 3-900051-07-0
    • R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2010, ISBN 3-900051-07-0. [Online]. Available: http://www.R-project.org
    • (2010) R: A Language and Environment for Statistical Computing


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.