메뉴 건너뛰기




Volumn 23, Issue 5, 2012, Pages 1893-1902

Using artificial intelligence to predict surface roughness in deep drilling of steel components

Author keywords

Bayesian networks; Deep drilling; Minimum quantity lubrication (MQL); Supervised classification; Surface roughness

Indexed keywords

ARTIFICIAL INTELLIGENCE TOOLS; CUTTING FORCES; CUTTING PARAMETERS; DEEP DRILLING; HIGH-SPEED CONDITIONS; INPUT DATAS; INPUT VARIABLES; MACHINE LEARNING CLASSIFICATION; MACHINE OPERATORS; MINIMUM QUANTITY LUBRICATION; MOULDS AND DIES; STEEL COMPONENTS; SUPERVISED CLASSIFICATION; WORKING FLUID;

EID: 84870927834     PISSN: 09565515     EISSN: 15728145     Source Type: Journal    
DOI: 10.1007/s10845-011-0506-8     Document Type: Article
Times cited : (44)

References (36)
  • 1
    • 84870876482 scopus 로고
    • Technical drawings-method of indicating surface texture
    • (1992). Technical drawings-method of indicating surface texture. International organization for standardization.
    • (1992) International Organization for Standardization
  • 2
    • 77955361114 scopus 로고    scopus 로고
    • Geometrical product specifications (GPS)-surface texture: Profile method-rules and procedures for the assessment of surface texture
    • I
    • I. (1996). Geometrical product specifications (GPS)-surface texture: Profile method-rules and procedures for the assessment of surface texture. International organization for standardization.
    • (1996) International Organization for Standardization
  • 3
    • 33645080975 scopus 로고    scopus 로고
    • Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining
    • Abukhshim, N., Mativenga, P., & Sheikh, A. (2006). Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining. International Journal of Machine Tools and Manufacture, 46(7-8), 782-800.
    • (2006) International Journal of Machine Tools and Manufacture , vol.46 , Issue.7-8 , pp. 782-800
    • Abukhshim, N.1    Mativenga, P.2    Sheikh, A.3
  • 5
    • 67349190236 scopus 로고    scopus 로고
    • Process adapted structure optimization of deep hole drilling tools
    • Biermann, D., Kersting, M., & Kessler, N. (2009). Process adapted structure optimization of deep hole drilling tools. CIRP Annals Manufacturing Technology, 58(1), 89-92.
    • (2009) CIRP Annals Manufacturing Technology , vol.58 , Issue.1 , pp. 89-92
    • Biermann, D.1    Kersting, M.2    Kessler, N.3
  • 6
    • 0029309724 scopus 로고
    • Real-time fuzzy-logic control for maximizing the tool life of small-diameter drills
    • Biglari, F., & Fang, X. (1995). Real-time fuzzy-logic control for maximizing the tool life of small-diameter drills. Fuzzy Sets and Systems, 72(1), 91-101.
    • (1995) Fuzzy Sets and Systems , vol.72 , Issue.1 , pp. 91-101
    • Biglari, F.1    Fang, X.2
  • 7
    • 0037022881 scopus 로고    scopus 로고
    • Using a minimum quantity of lubrication and a diamond coated tool in drilling of aluminum-silicon alloys
    • Braga, D., Diniz, A., Miranda, G., & Coppinni, N. (2002). Using a minimum quantity of lubrication and a diamond coated tool in drilling of aluminum-silicon alloys. Journal of Materials Processing Technology, 122, 127-138.
    • (2002) Journal of Materials Processing Technology , vol.122 , pp. 127-138
    • Braga, D.1    Diniz, A.2    Miranda, G.3    Coppinni, N.4
  • 11
    • 72449130980 scopus 로고    scopus 로고
    • Data mining in manufacturing: A review based on the kind of knowledge
    • Choudhary, A., Harding, J., & Tiwari, M. (2009). Data mining in manufacturing: A review based on the kind of knowledge. Journal of Intelligent Manufacturing, 20(5), 501-521.
    • (2009) Journal of Intelligent Manufacturing , vol.20 , Issue.5 , pp. 501-521
    • Choudhary, A.1    Harding, J.2    Tiwari, M.3
  • 12
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions
    • Chow, C., & Liu, C. (1968). Approximating discrete probability distributions. IEEE Transactions on Information Theory, 14, 462-467.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 14
    • 55749096392 scopus 로고    scopus 로고
    • A bayesian network model for surface roughness prediction in the machining process
    • Correa, M., Bielza, C., de Ramirez, J. M., & Alique, J. (2008). A bayesian network model for surface roughness prediction in the machining process. International Journal of Systems Science, 39(12), 1181-1192.
    • (2008) International Journal of Systems Science , vol.39 , Issue.12 , pp. 1181-1192
    • Correa, M.1    Bielza, C.2    De Ramirez, J.M.3    Alique, J.4
  • 15
    • 58349093492 scopus 로고    scopus 로고
    • Comparison of bayesian networks and artificial neural networks for quality detection in a machining process
    • Correa, M., Bielza, C., & Pamies-Teixeira, J. (2009). Comparison of bayesian networks and artificial neural networks for quality detection in a machining process. Expert Systems with Applications, 36, 7270-7279.
    • (2009) Expert Systems with Applications , vol.36 , pp. 7270-7279
    • Correa, M.1    Bielza, C.2    Pamies-Teixeira, J.3
  • 17
    • 33644815585 scopus 로고    scopus 로고
    • Minimum quantity lubrication (mql) applications in automotive power-train machining
    • Filipovic, A., & Stephenson, D. (1996). Minimum quantity lubrication (mql) applications in automotive power-train machining. Mechanical Science and Technology, 10, 3-22.
    • (1996) Mechanical Science and Technology , vol.10 , pp. 3-22
    • Filipovic, A.1    Stephenson, D.2
  • 19
    • 84870910951 scopus 로고    scopus 로고
    • A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling
    • Article in Press
    • Grzenda, M., Bustillo, A., Zawistowski, P. (2010). A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling. Journal of Intelligent Manufacturing, 1-11. Article in Press.
    • (2010) Journal of Intelligent Manufacturing , pp. 1-11
    • Grzenda, M.1    Bustillo, A.2    Zawistowski, P.3
  • 20
    • 67349224052 scopus 로고    scopus 로고
    • An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process
    • Haber, R., Haber-Haber, R., Jimenez, A., & Galan, R. (2009). An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process. Applied Soft Computing Journal, 9(3), 889-895.
    • (2009) Applied Soft Computing Journal , vol.9 , Issue.3 , pp. 889-895
    • Haber, R.1    Haber-Haber, R.2    Jimenez, A.3    Galan, R.4
  • 22
    • 0035265921 scopus 로고    scopus 로고
    • Hole quality in deep hole drilling source
    • Hayajneh, N. (2001). Hole quality in deep hole drilling source. Materials and Manufacturing Processes, 16(2), 147-164.
    • (2001) Materials and Manufacturing Processes , vol.16 , Issue.2 , pp. 147-164
    • Hayajneh, N.1
  • 25
    • 77952092702 scopus 로고    scopus 로고
    • Self adaptive diagnosis of tool wear with a microcontroller
    • Jantunen, E., & Vaajoensuu, E. (2010). Self adaptive diagnosis of tool wear with a microcontroller. Journal of Intelligent Manufacturing, 21(2), 223-230.
    • (2010) Journal of Intelligent Manufacturing , vol.21 , Issue.2 , pp. 223-230
    • Jantunen, E.1    Vaajoensuu, E.2
  • 26
    • 50849135518 scopus 로고    scopus 로고
    • A comparative study of the ann and rsm modeling approaches for predicting burr size in drilling
    • Karnik, S. R., Gaitonde, V. N., & Davim, J. P. (2008). A comparative study of the ann and rsm modeling approaches for predicting burr size in drilling. International Journal of Advanced Manufacturing Technology, 38(9-10), 868-883.
    • (2008) International Journal of Advanced Manufacturing Technology , vol.38 , Issue.9-10 , pp. 868-883
    • Karnik, S.R.1    Gaitonde, V.N.2    Davim, J.P.3
  • 28
    • 33845646720 scopus 로고    scopus 로고
    • Drilling to the limits: Innovative holemaking tools can improve cycle time, reduce cost per hole
    • Lorincz, J. (2006). Drilling to the limits: Innovative holemaking tools can improve cycle time, reduce cost per hole. Manufacturing Engineering, 136(4), 71-75.
    • (2006) Manufacturing Engineering , vol.136 , Issue.4 , pp. 71-75
    • Lorincz, J.1
  • 29
    • 68349106918 scopus 로고    scopus 로고
    • Investigating chatter vibration in deep drilling, including process damping and the gyroscopic effect
    • Mehrabadi, I., Nouri, M., & Madoliat, R. (2009). Investigating chatter vibration in deep drilling, including process damping and the gyroscopic effect. International Journal of Machine Tools & Manufacture, 49(12-13), 939-946.
    • (2009) International Journal of Machine Tools & Manufacture , vol.49 , Issue.12-13 , pp. 939-946
    • Mehrabadi, I.1    Nouri, M.2    Madoliat, R.3
  • 30
    • 58249132418 scopus 로고    scopus 로고
    • A study of drilling performances with minimum quantity of lubricant using fuzzy logic rules
    • Nandi, A., & Davim, J. (2009). A study of drilling performances with minimum quantity of lubricant using fuzzy logic rules. Mechatronics, 19(2), 218-232.
    • (2009) Mechatronics , vol.19 , Issue.2 , pp. 218-232
    • Nandi, A.1    Davim, J.2
  • 33
    • 29144452580 scopus 로고    scopus 로고
    • Modeling of tool wear in drilling by statistical analysis and artificial neural network
    • Sanjay, C., Neema, M., & Chin, C. (2005). Modeling of tool wear in drilling by statistical analysis and artificial neural network. Journal of Materials Processing Technology, 170(3), 494-500.
    • (2005) Journal of Materials Processing Technology , vol.170 , Issue.3 , pp. 494-500
    • Sanjay, C.1    Neema, M.2    Chin, C.3
  • 34
  • 36
    • 61449100551 scopus 로고    scopus 로고
    • Surface roughness optimization in a drilling operation using the taguchi design method
    • Zhang, J., & Chen, J. (2009). Surface roughness optimization in a drilling operation using the taguchi design method. Materials and Manufacturing Processes, 24(4), 459-467.
    • (2009) Materials and Manufacturing Processes , vol.24 , Issue.4 , pp. 459-467
    • Zhang, J.1    Chen, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.