메뉴 건너뛰기




Volumn 48, Issue , 2012, Pages 693-700

Surface roughness prediction using artificial neural networks when drilling UDIMET 720

Author keywords

Drilling; Monitoring strategy; Neural networks; Surface roughness

Indexed keywords


EID: 84888318510     PISSN: 18777058     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/j.proeng.2012.09.572     Document Type: Conference Paper
Times cited : (27)

References (14)
  • 1
    • 84879191730 scopus 로고    scopus 로고
    • Monitoring of drilling process for highly stressed aeroengine components
    • Zurich Procedia CIRP 1
    • Eckstein, M, Mankova, I., 2012. Monitoring of Drilling Process for Highly Stressed Aeroengine Components. 5th CIRP Conference on High Performance Cutting (HPC 2012) Zurich Procedia CIRP 1, pp. 604-609.
    • (2012) 5th CIRP Conference on High Performance Cutting (HPC 2012) , pp. 604-609
    • Eckstein, M.1    Mankova, I.2
  • 3
    • 0026225163 scopus 로고
    • Monitoring machining processes using multisensor readings fused by artificial neural networks
    • Masory Y., 1991. Monitoring machining processes using multisensor readings fused by artificial neural networks, in: 7th International Conference on Computer aided Production Engineering, vol. 28, pp. 231-240.
    • (1991) 7th International Conference on Computer Aided Production Engineering , vol.28 , pp. 231-240
    • Masory, Y.1
  • 4
    • 35348863189 scopus 로고    scopus 로고
    • Prediction of drill failure using feature extraction in time and frequency domain of feed muter current
    • Choi Y. J., Park M. S., Chu C. N., 2008. Prediction of drill failure using feature extraction in time and frequency domain of feed muter current, Int. J. Machine Tool Manuf. 48, 29-39
    • (2008) Int. J. Machine Tool Manuf , vol.48 , pp. 29-39
    • Choi, Y.J.1    Park, M.S.2    Chu, C.N.3
  • 6
    • 0001826036 scopus 로고
    • Online cutting state recognition using a neural network
    • Rahaman M., Zhou Q., 1995. Online cutting state recognition using a neural network, Int. J. Adv. Manuf. Technol. 2, p.87-92.
    • (1995) Int. J. Adv. Manuf. Technol , vol.2 , pp. 87-92
    • Rahaman, M.1    Zhou, Q.2
  • 7
    • 0033101969 scopus 로고    scopus 로고
    • Online monitoring of tool wear in turning using a neural network
    • Choudhury S.K., Jain V.K., 1999. Online monitoring of tool wear in turning using a neural network, Int. J.Machine Tools Manuf. 39, p. 489.
    • (1999) Int. J.Machine Tools Manuf , vol.39 , pp. 489
    • Choudhury, S.K.1    Jain, V.K.2
  • 8
    • 0028992258 scopus 로고
    • Tool wear monitoring in drilling using force signals
    • Lin S.C. Ting C.J., 1995. Tool wear monitoring in drilling using force signals, Wear 180, p. 53-60
    • (1995) Wear , vol.180 , pp. 53-60
    • Lin, S.C.1    Ting, C.J.2
  • 9
    • 0037402139 scopus 로고    scopus 로고
    • Drilling wear detection and classification using vibration signals and artificial neural network
    • Abbu-Mahfouz I., 2003. Drilling wear detection and classification using vibration signals and artificial neural network, Int. J. Machine Tool Manuf. 43, p. 707-720.
    • (2003) Int. J. Machine Tool Manuf , vol.43 , pp. 707-720
    • Abbu-Mahfouz, I.1
  • 12
    • 84867875338 scopus 로고    scopus 로고
    • Predicting surface roughness of hardened AISI 1040 based on cutting parameters using neural network and multiple regression
    • Accepted in press
    • Asilturk, I., 2012. Predicting surface roughness of hardened AISI 1040 based on cutting parameters using neural network and multiple regression, International Journal of Advanced Manuf. Technol. Vol 32 Accepted in press.
    • (2012) International Journal of Advanced Manuf. Technol , vol.32
    • Asilturk, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.