메뉴 건너뛰기




Volumn 209, Issue 2, 2009, Pages 894-899

Prediction of density, porosity and hardness in aluminum-copper-based composite materials using artificial neural network

Author keywords

Aluminum matrix composites; Artificial neural network; Compocasting; Hardness; Metal matrix composite

Indexed keywords

ALLOYING ELEMENTS; ALUMINA; ALUMINUM; BACKPROPAGATION; CARBON FIBER REINFORCED PLASTICS; COPPER; HARDNESS; LIGHT METALS; MATERIALS PROPERTIES; METALLIC MATRIX COMPOSITES; METROPOLITAN AREA NETWORKS; REINFORCEMENT; SILICON CARBIDE; VEGETATION;

EID: 58149145882     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2008.02.066     Document Type: Article
Times cited : (158)

References (22)
  • 1
    • 58149172533 scopus 로고    scopus 로고
    • Application of artificial neural networks to predict the carbon content and the grain size for carbon steel
    • Abdelhay A.M. Application of artificial neural networks to predict the carbon content and the grain size for carbon steel. Egypt J. Solids 25 2 (2002) 229-243
    • (2002) Egypt J. Solids , vol.25 , Issue.2 , pp. 229-243
    • Abdelhay, A.M.1
  • 3
    • 27544468802 scopus 로고    scopus 로고
    • Use of artificial neural network for prediction of physical properties and tensile strengths in particle reinforced aluminum matrix composites
    • Altinkok N., and Koker R. Use of artificial neural network for prediction of physical properties and tensile strengths in particle reinforced aluminum matrix composites. J. Mater. Sci. Eng. 40 (2005) 1767-1770
    • (2005) J. Mater. Sci. Eng. , vol.40 , pp. 1767-1770
    • Altinkok, N.1    Koker, R.2
  • 4
    • 33644613754 scopus 로고    scopus 로고
    • Modeling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks
    • Altinkok N., and Koker R. Modeling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks. Mater. Des. 27 (2006) 625-631
    • (2006) Mater. Des. , vol.27 , pp. 625-631
    • Altinkok, N.1    Koker, R.2
  • 7
    • 23944514874 scopus 로고    scopus 로고
    • The use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminum alloy
    • Durmus H.K., Ozkaya E., and Meric C. The use of neural networks for the prediction of wear loss and surface roughness of AA 6351 aluminum alloy. Mater. Des. 27 (2006) 156-159
    • (2006) Mater. Des. , vol.27 , pp. 156-159
    • Durmus, H.K.1    Ozkaya, E.2    Meric, C.3
  • 8
    • 33846952205 scopus 로고    scopus 로고
    • The effect of graphite and/or silicon carbide addition on the hardness and surface roughness of Al-4 wt.%Mg alloy
    • Hassan A.M., Tashtoush G.M., and Alkhalil J.A. The effect of graphite and/or silicon carbide addition on the hardness and surface roughness of Al-4 wt.%Mg alloy. Compos. Mater. 41 4 (2007) 453-465
    • (2007) Compos. Mater. , vol.41 , Issue.4 , pp. 453-465
    • Hassan, A.M.1    Tashtoush, G.M.2    Alkhalil, J.A.3
  • 9
    • 0029404475 scopus 로고
    • Artificial neural networks for the prediction of mechanical behavior of metal matrix composites
    • Mukherjee A., Schqmquder S., and Ruhle M. Artificial neural networks for the prediction of mechanical behavior of metal matrix composites. Acta Met. Mater. 43 11 (1995) 4083-4091
    • (1995) Acta Met. Mater. , vol.43 , Issue.11 , pp. 4083-4091
    • Mukherjee, A.1    Schqmquder, S.2    Ruhle, M.3
  • 12
    • 0033360290 scopus 로고    scopus 로고
    • The use of neural networks for the prediction of fatigue lives of composite materials
    • Lee J.A., Almond D.P., and Harris B. The use of neural networks for the prediction of fatigue lives of composite materials. Compos.: Part A 30 (1999) 1159-1169
    • (1999) Compos.: Part A , vol.30 , pp. 1159-1169
    • Lee, J.A.1    Almond, D.P.2    Harris, B.3
  • 15
    • 33644913975 scopus 로고    scopus 로고
    • P MMC) on journal bearing
    • P MMC) on journal bearing. Ind. Lubric. Tribol. 58 2 (2006) 95-109
    • (2006) Ind. Lubric. Tribol. , vol.58 , Issue.2 , pp. 95-109
    • Sinanoglu, C.1
  • 17
    • 0038010938 scopus 로고    scopus 로고
    • Aluminum matrix composites: challenges and opportunities
    • Surappa M.K. Aluminum matrix composites: challenges and opportunities. Sadhana 28 1-2 (2003) 319-334
    • (2003) Sadhana , vol.28 , Issue.1-2 , pp. 319-334
    • Surappa, M.K.1
  • 18
    • 0042728370 scopus 로고    scopus 로고
    • The influence of the hot deformation and heat treatment on the properties of P/M Al-Cu composites
    • Szezepanik S., and Sleboda T. The influence of the hot deformation and heat treatment on the properties of P/M Al-Cu composites. J. Mater. Process. Technol. 60 (1996) 729-733
    • (1996) J. Mater. Process. Technol. , vol.60 , pp. 729-733
    • Szezepanik, S.1    Sleboda, T.2
  • 20
    • 0036530936 scopus 로고    scopus 로고
    • Prediction on tribological properties of short fiber composites using artificial neural networks
    • Zhang Z., Friedrich K., and Velten K. Prediction on tribological properties of short fiber composites using artificial neural networks. Wear 252 (2002) 668-675
    • (2002) Wear , vol.252 , pp. 668-675
    • Zhang, Z.1    Friedrich, K.2    Velten, K.3
  • 21
    • 0041568265 scopus 로고    scopus 로고
    • Artificial neural network predictions on erosive wear of polymers
    • Zhang Z., Barkoula M., Karger-Kocsis J., and Friedrich K. Artificial neural network predictions on erosive wear of polymers. Wear 255 (2003) 708-713
    • (2003) Wear , vol.255 , pp. 708-713
    • Zhang, Z.1    Barkoula, M.2    Karger-Kocsis, J.3    Friedrich, K.4
  • 22
    • 33748957932 scopus 로고    scopus 로고
    • Artificial neural networks in spectrum fatigue life prediction of composite materials
    • Vassilopoulos A.P., Georgopoulos E.F., and Dionysopoulos V. Artificial neural networks in spectrum fatigue life prediction of composite materials. Int. J. Fatigue 29 (2007) 20-29
    • (2007) Int. J. Fatigue , vol.29 , pp. 20-29
    • Vassilopoulos, A.P.1    Georgopoulos, E.F.2    Dionysopoulos, V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.