|
Volumn 470, Issue 1-2, 2009, Pages 584-588
|
Prediction of tribological behavior of aluminum-copper based composite using artificial neural network
|
Author keywords
Artificial neural network (ANN); Metal matrix composite; Metals and alloys; Wear
|
Indexed keywords
ALLOYING ELEMENTS;
ALLOYS;
ALUMINA;
ALUMINUM;
ARTIFICIAL INTELLIGENCE;
ATMOSPHERIC HUMIDITY;
BACKPROPAGATION;
CARBON FIBER REINFORCED PLASTICS;
COMPOSITE MICROMECHANICS;
COPPER;
DISKS (STRUCTURAL COMPONENTS);
LASER BEAM WELDING;
METALLIC COMPOUNDS;
METALLIC MATRIX COMPOSITES;
METALLURGY;
METALS;
REINFORCEMENT;
SILICON ALLOYS;
SILICON CARBIDE;
AL-CU ALLOYS;
ALUMINUM COPPERS;
ARTIFICIAL NEURAL NETWORK (ANN);
AVERAGE VALUES;
DRY SLIDING WEAR TESTS;
FEED FORWARD BACK PROPAGATION;
METAL MATRIX COMPOSITE;
METALS AND ALLOYS;
MG METAL MATRIXES;
NORMAL LOADS;
PIN-ON-DISK APPARATUS;
REINFORCEMENT PARTICLES;
RELATIVE ERRORS;
RELATIVE HUMIDITIES;
ROTATIONAL SPEED;
SILICON CARBIDE COMPOSITES;
TRIBOLOGICAL BEHAVIORS;
WEAR;
WEAR LOSS;
NEURAL NETWORKS;
|
EID: 59249086891
PISSN: 09258388
EISSN: None
Source Type: Journal
DOI: 10.1016/j.jallcom.2008.03.035 Document Type: Article |
Times cited : (78)
|
References (23)
|