메뉴 건너뛰기




Volumn 20, Issue 4, 2011, Pages 473-485

Online tool wear prediction in drilling operations using selective artificial neural network ensemble model

Author keywords

Drilling; Flank wear; Selective artificial neural network ensemble; Sensor signal; Tool wear

Indexed keywords

ARTIFICIAL NEURAL NETWORK ENSEMBLES; ARTIFICIAL NEURAL NETWORK MODELS; DRILLING OPERATION; FLANK WEAR; GENERALIZATION PERFORMANCE; HEURISTIC APPROACH; INDUSTRY AUTOMATION; MULTIPLE SENSORS; ON-LINE TOOLS; POTENTIAL APPLICATIONS; PRODUCT QUALITY; SELECTIVE ARTIFICIAL NEURAL NETWORK ENSEMBLE; SENSOR SIGNAL; TOOL CONDITION MONITORING; TOOL WEAR;

EID: 79955806087     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-011-0539-0     Document Type: Article
Times cited : (22)

References (25)
  • 1
    • 0037402139 scopus 로고    scopus 로고
    • Drilling wear detection and classification using vibration signals and artificial neural network
    • Abu-Mahfouz I (2003) Drilling wear detection and classification using vibration signals and artificial neural network. Int J Machine Tools Manufacture 43: 707-720.
    • (2003) Int J Machine Tools Manufacture , vol.43 , pp. 707-720
    • Abu-Mahfouz, I.1
  • 2
    • 78650179604 scopus 로고    scopus 로고
    • Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns
    • Purushothaman S (2009) Tool wear monitoring using artificial neural network based on extended Kalman filter weight updation with transformed input patterns. J Int Man 21(6): 717-730.
    • (2009) J Int Man , vol.21 , Issue.6 , pp. 717-730
    • Purushothaman, S.1
  • 4
    • 0030129165 scopus 로고    scopus 로고
    • Drill wear monitoring using neural networks
    • Lin SC, Ting CJ (1996) Drill wear monitoring using neural networks. Int J Machine Tools Man 36(4): 465-475.
    • (1996) Int J Machine Tools Man , vol.36 , Issue.4 , pp. 465-475
    • Lin, S.C.1    Ting, C.J.2
  • 5
    • 34248996874 scopus 로고    scopus 로고
    • Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear
    • Garg S, Pal SK, Chakraborty D (2007) Evaluation of the performance of backpropagation and radial basis function neural networks in predicting the drill flank wear. Neural Comput App 16: 407-417.
    • (2007) Neural Comput App , vol.16 , pp. 407-417
    • Garg, S.1    Pal, S.K.2    Chakraborty, D.3
  • 6
    • 37249066273 scopus 로고    scopus 로고
    • Flank wear prediction in drilling using back propagation neural network and radial basis function network
    • Panda SS, Chakraborty D, Pal SK (2008) Flank wear prediction in drilling using back propagation neural network and radial basis function network. App Soft Comput 8: 858-871.
    • (2008) App Soft Comput , vol.8 , pp. 858-871
    • Panda, S.S.1    Chakraborty, D.2    Pal, S.K.3
  • 7
    • 28844455725 scopus 로고    scopus 로고
    • Drill flank wear estimation using supervised vector quantization neural networks
    • Abu-Mahfouz I (2005) Drill flank wear estimation using supervised vector quantization neural networks. Neural Comput App 14(3): 167-175.
    • (2005) Neural Comput App , vol.14 , Issue.3 , pp. 167-175
    • Abu-Mahfouz, I.1
  • 8
    • 46249088112 scopus 로고    scopus 로고
    • Design of neural network-based estimator for tool wear modeling in hard turning
    • Wang X, Wang W, Huang Y, Nguyen N, Krishnakiumar K (2008) Design of neural network-based estimator for tool wear modeling in hard turning. J Int Man 19: 383-396.
    • (2008) J Int Man , vol.19 , pp. 383-396
    • Wang, X.1    Wang, W.2    Huang, Y.3    Nguyen, N.4    Krishnakiumar, K.5
  • 9
    • 0346625199 scopus 로고    scopus 로고
    • Integration of artificial neural networks and fuzzy modeling for intelligent control of machining
    • Kuo RJ, Cohen PH (1998) Integration of artificial neural networks and fuzzy modeling for intelligent control of machining. Fuzzy Sets Sys 98(1): 15-31.
    • (1998) Fuzzy Sets Sys , vol.98 , Issue.1 , pp. 15-31
    • Kuo, R.J.1    Cohen, P.H.2
  • 10
    • 3042774604 scopus 로고    scopus 로고
    • Monitoring of flank wear of coated tools in high speed machining with a neural network ART2
    • Obikawa T, Shinozuka J (2004) Monitoring of flank wear of coated tools in high speed machining with a neural network ART2. Int J Machine Tools Man 44(12-13): 1311-1318.
    • (2004) Int J Machine Tools Man , vol.44 , Issue.12-13 , pp. 1311-1318
    • Obikawa, T.1    Shinozuka, J.2
  • 11
    • 0033104456 scopus 로고    scopus 로고
    • Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network
    • Kuo RJ, Cohen PH (1999) Multi-sensor integration for on-line tool wear estimation through radial basis function networks and fuzzy neural network. Neural Netw 12: 355-370.
    • (1999) Neural Netw , vol.12 , pp. 355-370
    • Kuo, R.J.1    Cohen, P.H.2
  • 12
    • 36048967870 scopus 로고    scopus 로고
    • Monitoring of drill flank wear using fuzzy back-propagation neural network
    • Panda SS, Chakraborty D, Pal SK (2006) Monitoring of drill flank wear using fuzzy back-propagation neural network. Int J Adv Man Technol 34(3-4): 227-235.
    • (2006) Int J Adv Man Technol , vol.34 , Issue.3-4 , pp. 227-235
    • Panda, S.S.1    Chakraborty, D.2    Pal, S.K.3
  • 13
    • 57949102921 scopus 로고    scopus 로고
    • Adaptive network based inference system for estimation of flank wear in end-milling
    • Zuperl U, Cus F, Kiker E (2009) Adaptive network based inference system for estimation of flank wear in end-milling. J Mat Proc Technol 209(3): 1504-1511.
    • (2009) J Mat Proc Technol , vol.209 , Issue.3 , pp. 1504-1511
    • Zuperl, U.1    Cus, F.2    Kiker, E.3
  • 14
    • 33644749301 scopus 로고    scopus 로고
    • Approach to optimization of cutting conditions by using artificial neural networks
    • Cus F, Zuperl U (2006) Approach to optimization of cutting conditions by using artificial neural networks. J Mat Proc Technol 173(3): 281-290.
    • (2006) J Mat Proc Technol , vol.173 , Issue.3 , pp. 281-290
    • Cus, F.1    Zuperl, U.2
  • 16
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks, many could be better than all
    • Zhou ZH, Wu JX, Tang W (2002) Ensembling neural networks, many could be better than all. Art Int 137: 239-263.
    • (2002) Art Int , vol.137 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3
  • 18
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire RE (1990) The strength of weak learnability. Mach Learn 5: 197-227.
    • (1990) Mach Learn , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24: 123-140.
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 22
    • 0001942829 scopus 로고
    • Neural networks and the Bias/Variance Dilemma
    • Geman S, Bienenstock E, Doursat R (1992) Neural networks and the Bias/Variance Dilemma. Neural Comput 4: 1-58.
    • (1992) Neural Comput , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 23
    • 0000926506 scopus 로고
    • When networks disagree: ensemble method for neural networks
    • R. J. Mammone (Ed.), New York: Chapman & Hall
    • Perrone MP, Cooper LN (1993) When networks disagree: ensemble method for neural networks. In: Mammone RJ (ed) Artificial neural networks for speed and vision. Chapman & Hall, New York, pp 126-142.
    • (1993) Artificial Neural Networks for Speed and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 25
    • 79955795367 scopus 로고    scopus 로고
    • The MathWorks Company (2004) Neural network toolbox. The Math Works Inc.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.