메뉴 건너뛰기




Volumn 96, Issue 9, 2013, Pages 782-790

Abrogation of chronic rejection in rat model system involves modulation of the mTORC1 and mTORC2 pathways

Author keywords

Actin cytoskeleton; Chronic rejection; mTOR; Rac1; Transplantation

Indexed keywords

ALLOCHIMERIC PEPTIDE; CYCLOSPORIN A; DEPTOR PROTEIN; IMMUNOSUPPRESSIVE AGENT; MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; PEPTIDE DERIVATIVE; PROTEIN SIN1; RAC1 PROTEIN; RAPTOR PROTEIN; RICTOR PROTEIN; TRANSCRIPTION FACTOR; UNCLASSIFIED DRUG;

EID: 84888136864     PISSN: 00411337     EISSN: None     Source Type: Journal    
DOI: 10.1097/TP.0b013e3182a2034f     Document Type: Article
Times cited : (15)

References (44)
  • 1
    • 34247118647 scopus 로고    scopus 로고
    • Immunobiology of rejection and adaptation
    • Trivedi HL. Immunobiology of rejection and adaptation. Transplant Proc 2007; 39: 647
    • (2007) Transplant Proc , vol.39 , pp. 647
    • Trivedi, H.L.1
  • 2
    • 0019905082 scopus 로고
    • Genetic control of transplant rejection
    • Butcher GW, Howard JC. Genetic control of transplant rejection. Transplantation 1982; 34: 161
    • (1982) Transplantation , vol.34 , pp. 161
    • Butcher, G.W.1    Howard, J.C.2
  • 3
    • 0025187131 scopus 로고
    • Problems related to immunosuppression infection and malignancy occurring after solid organ transplantation
    • Dunn DL. Problems related to immunosuppression. Infection and malignancy occurring after solid organ transplantation. Critical Care Clinics 1990; 6: 955
    • (1990) Critical Care Clinics , vol.6 , pp. 955
    • Dunn, D.L.1
  • 4
    • 0029691229 scopus 로고    scopus 로고
    • New approaches to specific immunomodulation in transplantation
    • Colovai AI, Renna-Molajoni E, Cortesini R, et al. New approaches to specific immunomodulation in transplantation. Int Rev Immunol 1996; 13: 161
    • (1996) Int Rev Immunol , vol.13 , pp. 161
    • Colovai, A.I.1    Renna-Molajoni, E.2    Cortesini, R.3
  • 5
    • 38049020656 scopus 로고    scopus 로고
    • Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes
    • Joffre O, Santolaria T, Calise D, et al. Prevention of acute and chronic allograft rejection with CD4+CD25+Foxp3+ regulatory T lymphocytes. Nat Med 2008; 14: 88
    • (2008) Nat Med , vol.14 , pp. 88
    • Joffre, O.1    Santolaria, T.2    Calise, D.3
  • 6
    • 0029805828 scopus 로고    scopus 로고
    • Induction of transplantation tolerance by chimeric donor/recipient class I RT1.Aa molecules
    • Ghobrial RM, Hamashima T, Wang M, et al. Induction of transplantation tolerance by chimeric donor/recipient class I RT1.Aa molecules. Transplantation 1996; 62: 1002
    • (1996) Transplantation , vol.62 , pp. 1002
    • Ghobrial, R.M.1    Hamashima, T.2    Wang, M.3
  • 7
    • 0037468503 scopus 로고    scopus 로고
    • Posttransplant administration of allochimeric major histocompatibility complex class-Imolecules induces true transplantation tolerance
    • Semiletova N, Shen X-D, Fishbein MC, et al. Posttransplant administration of allochimeric major histocompatibility complex class-Imolecules induces true transplantation tolerance. Transplantation 2003; 75: 550
    • (2003) Transplantation , vol.75 , pp. 550
    • Semiletova, N.1    Shen, X.-D.2    Fishbein, M.C.3
  • 8
    • 29344453120 scopus 로고    scopus 로고
    • Inhibition of chronic rejection by antibody induced vascular accommodation in fully allogeneic heart allografts
    • Semiletova NV, Shen X-D, Baibakov B, et al. Inhibition of chronic rejection by antibody induced vascular accommodation in fully allogeneic heart allografts. Transplantation 2005; 80: 1535
    • (2005) Transplantation , vol.80 , pp. 1535
    • Semiletova, N.V.1    Shen, X.-D.2    Baibakov, B.3
  • 9
    • 0035960324 scopus 로고    scopus 로고
    • Allochimeric class I MHC molecules prevent chronic rejection and attenuate alloantibody responses
    • Singer JS, Mhoyan A, Fishbein MC, et al. Allochimeric class I MHC molecules prevent chronic rejection and attenuate alloantibody responses. Transplantation 2001; 72: 1408
    • (2001) Transplantation , vol.72 , pp. 1408
    • Singer, J.S.1    Mhoyan, A.2    Fishbein, M.C.3
  • 10
    • 84888130781 scopus 로고    scopus 로고
    • Allochimeric MHC Iconditioned T cells attenuate chronic rejection in rat cardiac model system
    • Skelton T, Cordero AM, Nelles NJ, et al. Allochimeric MHC Iconditioned T cells attenuate chronic rejection in rat cardiac model system. J Clin Cell Immunol 2011; 2: 108
    • (2011) J Clin Cell Immunol , vol.2 , pp. 108
    • Skelton, T.1    Cordero, A.M.2    Nelles, N.J.3
  • 11
    • 77949501760 scopus 로고    scopus 로고
    • Down regulation of genes involved in T cell polarity and motility during the induction of heart allograft tolerance by allochimeric MHC I
    • Lisik W, Tejpal N, Gong Y, et al. Down regulation of genes involved in T cell polarity and motility during the induction of heart allograft tolerance by allochimeric MHC I. PLoS One 2009; 4: E8020
    • (2009) PLoS One , vol.4
    • Lisik, W.1    Tejpal, N.2    Gong, Y.3
  • 12
    • 83555174651 scopus 로고    scopus 로고
    • Allochimeric molecules and mechanisms in abrogation of cardiac allograft rejection
    • Skelton TS, Tejpal N, Gong Y, et al. Allochimeric molecules and mechanisms in abrogation of cardiac allograft rejection. J Heart Lung Transplant 2012; 31: 73
    • (2012) J Heart Lung Transplant , vol.31 , pp. 73
    • Skelton, T.S.1    Tejpal, N.2    Gong, Y.3
  • 13
    • 77956064074 scopus 로고    scopus 로고
    • Downregulation of RhoA and changes in T cell cytoskeleton correlate with the abrogation of allograft rejection
    • Skelton TS, Tejpal N, Gong Y, et al. Downregulation of RhoA and changes in T cell cytoskeleton correlate with the abrogation of allograft rejection. Transpl Immunol 2010; 23: 185
    • (2010) Transpl Immunol , vol.23 , pp. 185
    • Skelton, T.S.1    Tejpal, N.2    Gong, Y.3
  • 14
    • 74749108895 scopus 로고    scopus 로고
    • Intragraft gene expression profile associated with the induction of tolerance by allochimeric MHC I in the rat heart transplantation model
    • Lisik W, Gong Y, Tejpal N, et al. Intragraft gene expression profile associated with the induction of tolerance by allochimeric MHC I in the rat heart transplantation model. Genesis 2010; 48: 8
    • (2010) Genesis , vol.48 , pp. 8
    • Lisik, W.1    Gong, Y.2    Tejpal, N.3
  • 15
    • 67650667750 scopus 로고    scopus 로고
    • Intragraft selection of the T cell receptor repertoire by class I MHC sequences in tolerant recipients
    • Liu D, Shen XD, Zhai Y, et al. Intragraft selection of the T cell receptor repertoire by class I MHC sequences in tolerant recipients. PLoS One 2009; 4: E6076
    • (2009) PLoS One , vol.4
    • Liu, D.1    Shen, X.D.2    Zhai, Y.3
  • 16
    • 84888127619 scopus 로고    scopus 로고
    • Rock1 inhibitor abrogates chronic rejection in rat cardiac model system
    • Zhang L, Kloc M, Tejpal N, et al. ROCK1 inhibitor abrogates chronic rejection in rat cardiac model system. Open J Organ Transpl Surg 2012; 2: 46
    • (2012) Open J Organ Transpl Surg , vol.2 , pp. 46
    • Zhang, L.1    Kloc, M.2    Tejpal, N.3
  • 17
    • 6344231714 scopus 로고    scopus 로고
    • Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility
    • Wheelera AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res 2004; 301: 43
    • (2004) Exp Cell Res , vol.301 , pp. 43
    • Wheelera, A.P.1    Ridley, A.J.2
  • 18
    • 0037079628 scopus 로고    scopus 로고
    • Pases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes
    • Delaguillaumie A, Lagaudrière-Gesbert C, Popoff MR, et al. Pases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes. J. Cell Sci 2002; 115: 433
    • (2002) J. Cell Sci , vol.115 , pp. 433
    • Delaguillaumie, A.1    Lagaudrière-Gesbert, C.2    Popoff, M.R.3
  • 19
    • 6344219506 scopus 로고    scopus 로고
    • Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes
    • Nijhara R, van Hennik PB, Gignac ML, et al. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes. J. Immunol 2004; 173: 4985
    • (2004) J. Immunol , vol.173 , pp. 4985
    • Nijhara, R.1    Van Hennik, P.B.2    Gignac, M.L.3
  • 20
    • 7244247060 scopus 로고    scopus 로고
    • Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation
    • Lee JH, Katakai T, Hara T, et al. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J Cell Biol 2004; 167: 327
    • (2004) J Cell Biol , vol.167 , pp. 327
    • Lee, J.H.1    Katakai, T.2    Hara, T.3
  • 21
    • 58149470266 scopus 로고    scopus 로고
    • Rho GTPase-mediated pathways in mature CD4+ T cells
    • Pernis AB Rho GTPase-mediated pathways in mature CD4+ T cells. Autoimmun Rev 2009; 8: 199
    • (2009) Autoimmun Rev , vol.8 , pp. 199
    • Pernis, A.B.1
  • 22
    • 67651111993 scopus 로고    scopus 로고
    • Immunomodulatory drugs reorganize cytoskeleton by modulating Rho GTPases
    • Xu Y, Li J, Ferguson GD, et al. Immunomodulatory drugs reorganize cytoskeleton by modulating Rho GTPases. Blood. 2009; 114: 338
    • (2009) Blood , vol.114 , pp. 338
    • Xu, Y.1    Li, J.2    Ferguson, G.D.3
  • 23
    • 79955486858 scopus 로고    scopus 로고
    • Mtorc1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways
    • Gulhati P, Bowen KA, Liu J, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011; 71: 3246
    • (2011) Cancer Res , vol.71 , pp. 3246
    • Gulhati, P.1    Bowen, K.A.2    Liu, J.3
  • 24
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E, Loewith R, Schmidt A, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122
    • (2004) Nat Cell Biol , vol.6 , pp. 1122
    • Jacinto, E.1    Loewith, R.2    Schmidt, A.3
  • 25
    • 78649637235 scopus 로고    scopus 로고
    • Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity
    • Liu L, Luo Y, Chen L, et al. Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J Biol Chem 2010; 285: 38362
    • (2010) J Biol Chem , vol.285 , pp. 38362
    • Liu, L.1    Luo, Y.2    Chen, L.3
  • 26
    • 77957823928 scopus 로고    scopus 로고
    • 2011 activation of mtor and rhoa is a major mechanism by which ceramide 1-phosphate stimulates macrophage proliferation
    • Gangoiti P, Arana L, Ouro A, et al. (2011). Activation of mTOR and RhoA is a major mechanism by which ceramide 1-phosphate stimulates macrophage proliferation. Cell Signal 2011; 23: 27
    • (2011) Cell Signal , vol.23 , pp. 27
    • Gangoiti, P.1    Arana, L.2    Ouro, A.3
  • 27
    • 32044465506 scopus 로고    scopus 로고
    • TOR signaling in growth and metabolism
    • Wullschleger S, Loewith R, Hall M. TOR signaling in growth and metabolism. Cell 2006; 124: 471
    • (2006) Cell , vol.124 , pp. 471
    • Wullschleger, S.1    Loewith, R.2    Hall, M.3
  • 29
    • 34047095297 scopus 로고    scopus 로고
    • The two torcs and akt
    • Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell 2007; 12: 487
    • (2007) Dev Cell , vol.12 , pp. 487
    • Bhaskar, P.T.1    Hay, N.2
  • 30
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159
    • (2006) Mol Cell , vol.22 , pp. 159
    • Sarbassov, D.D.1    Ali, S.M.2    Sengupta, S.3
  • 31
    • 79952320231 scopus 로고    scopus 로고
    • The evolving role of mTOR inhibition in transplantation tolerance
    • McMahon G, Weir MR, Li XC, et al. The evolving role of mTOR inhibition in transplantation tolerance. J Am Soc Nephrol 2011; 22: 408
    • (2011) J Am Soc Nephrol , vol.22 , pp. 408
    • McMahon, G.1    Weir, M.R.2    Li, X.C.3
  • 32
    • 43249124698 scopus 로고    scopus 로고
    • PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
    • Thedieck K, Polak P, Kim ML, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2007; 11: E1217
    • (2007) PLoS One , vol.11
    • Thedieck, K.1    Polak, P.2    Kim, M.L.3
  • 33
    • 34547133519 scopus 로고    scopus 로고
    • The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1
    • Oshiro N, Takahashi R, Yoshino K, et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007; 282: 20329
    • (2007) J Biol Chem , vol.282 , pp. 20329
    • Oshiro, N.1    Takahashi, R.2    Yoshino, K.3
  • 34
    • 77955488179 scopus 로고    scopus 로고
    • Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells
    • Lazorchak AS, Liu D, Facchinetti V, et al. Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. Mol Cell 2010; 39: 433
    • (2010) Mol Cell , vol.39 , pp. 433
    • Lazorchak, A.S.1    Liu, D.2    Facchinetti, V.3
  • 35
    • 34347210090 scopus 로고    scopus 로고
    • Identification of Protor as a novel Rictor-binding component of mTOR complex-2
    • Pearce LR, Huang X, Boudeau J, et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 2007; 405: 513
    • (2007) Biochem J , vol.405 , pp. 513
    • Pearce, L.R.1    Huang, X.2    Boudeau, J.3
  • 36
    • 67349241955 scopus 로고    scopus 로고
    • DEPTOR is an mTOR inhibitor whose frequent overexpression in multiple myeloma cells promotes their survival
    • Peterson TR, Laplante M, Thoreen CC, et al. DEPTOR is an mTOR inhibitor whose frequent overexpression in multiple myeloma cells promotes their survival. Cell 2009; 137: 873
    • (2009) Cell , vol.137 , pp. 873
    • Peterson, T.R.1    Laplante, M.2    Thoreen, C.C.3
  • 37
    • 79955486858 scopus 로고    scopus 로고
    • MTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways
    • Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011; 71: 3246-56
    • (2011) Cancer Res , vol.71 , pp. 3246-3256
    • Gulhati, P.1    Bowen, K.A.2    Liu, J.3    Stevens, P.D.4    Rychahou, P.G.5    Chen, M.6
  • 38
    • 7944235758 scopus 로고    scopus 로고
    • Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
    • Jacinto E, Loewith R, Schmidt A, Lin S, et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nature Cell Biol 2004; 6: 1122-28
    • (2004) Nature Cell Biol , vol.6 , pp. 1122-1128
    • Jacinto, E.1    Loewith, R.2    Schmidt, A.3    Lin, S.4
  • 39
    • 78649637235 scopus 로고    scopus 로고
    • Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity
    • Liu L, Luo Y, Chen L, Shen T, Xu B, Chen W, Zhou H, Han X, Huang S. Rapamycin inhibits cytoskeleton reorganization and cell motility by suppressing RhoA expression and activity. J. Biol. Chem 2010; 285: 38362-73
    • (2010) J. Biol. Chem , vol.285 , pp. 38362-38373
    • Liu, L.1    Luo, Y.2    Chen, L.3    Shen, T.4    Xu, B.5    Chen, W.6    Zhou, H.7    Han, X.8    Huang, S.9
  • 40
    • 77957823928 scopus 로고    scopus 로고
    • Activation of mTOR and RhoA is a major mechanism by which Ceramide 1-phosphate stimulates macrophage proliferation
    • Gangoiti P, Arana L, Ouro A, Granado MH, Trueba M, Gómez- Muñoz A. Activation of mTOR and RhoA is a major mechanism by which Ceramide 1-phosphate stimulates macrophage proliferation. Cell Signal 2011; 23: 27-34
    • (2011) Cell Signal , vol.23 , pp. 27-34
    • Gangoiti, P.1    Arana, L.2    Ouro, A.3    Granado, M.H.4    Trueba, M.5    Gómez- Muñoz, A.6
  • 41
    • 79957533820 scopus 로고    scopus 로고
    • Cell growth: RAC1 sizes up mTOR
    • Schuldt A. Cell growth: RAC1 sizes up mTOR. Nat Rev Mol Cell Biol 2011; 12: 343
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 343
    • Schuldt, A.1
  • 42
    • 79953307234 scopus 로고    scopus 로고
    • Rac1 Regulates the Activity of mTORC1 and mTORC2 and Controls Cellular Size
    • Saci A, Cantley LC, Carpenter CL. Rac1 Regulates the Activity of mTORC1 and mTORC2 and Controls Cellular Size. Mol. Cell 2011; 42: 50-61
    • (2011) Mol. Cell , vol.42 , pp. 50-61
    • Saci, A.1    Cantley, L.C.2    Carpenter, C.L.3
  • 43
    • 84864751451 scopus 로고    scopus 로고
    • Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1
    • Bridgesa D, Maa J-T, Parka S, Inokia K, Weismana LS, Saltiela AR. Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol. Biol. Cell 2012; 23: 2955-2962
    • (2012) Mol. Biol. Cell , vol.23 , pp. 2955-2962
    • Bridgesa, D.1    Maa, J.-T.2    Parka, S.3    Inokia, K.4    Weismana, L.S.5    Saltiela, A.R.6
  • 44
    • 53149083731 scopus 로고    scopus 로고
    • Syndecan-4 regulates subcellular localization of mTOR complex2 and Akt activation in a PKCa-dependent manner in endothelial cells
    • Partovian C, Ju R, Zhuang ZW, Martin K, Simons M. Syndecan-4 regulates subcellular localization of mTOR complex2 and Akt activation in a PKCa-dependent manner in endothelial cells. Mol Cell 2008; 32: 140-149
    • (2008) Mol Cell , vol.32 , pp. 140-149
    • Partovian, C.1    Ju, R.2    Zhuang, Z.W.3    Martin, K.4    Simons, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.