메뉴 건너뛰기




Volumn 77, Issue 4, 2004, Pages 351-366

A unified wavelet-based modelling framework for non-linear system identification: The WANARX model structure

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; DATA REDUCTION; ERROR ANALYSIS; MATHEMATICAL MODELS; MULTIVARIABLE CONTROL SYSTEMS; POLYNOMIALS; PROBLEM SOLVING; REGRESSION ANALYSIS; THEOREM PROVING;

EID: 2342418631     PISSN: 00207179     EISSN: None     Source Type: Journal    
DOI: 10.1080/0020717042000197622     Document Type: Article
Times cited : (33)

References (34)
  • 1
    • 0024685547 scopus 로고
    • Identification of MIMO non-linear systems using a forward regression orthogonal estimator
    • BILLINGS, S. A., CHEN, S., and KORENBERG, M. J., 1989, Identification of MIMO non-linear systems using a forward regression orthogonal estimator. International Journal of Control, 49, 2157-2189.
    • (1989) International Journal of Control , vol.49 , pp. 2157-2189
    • Billings, S.A.1    Chen, S.2    Korenberg, M.J.3
  • 2
    • 0033163944 scopus 로고    scopus 로고
    • Discrete wavelet models for identification and qualitative analysis of chaotic systems
    • BILLINGS, S. A., and COCA, D., 1999, Discrete wavelet models for identification and qualitative analysis of chaotic systems. International Journal of Bifurcation and Chaos, 9, 1263-1284.
    • (1999) International Journal of Bifurcation and Chaos , vol.9 , pp. 1263-1284
    • Billings, S.A.1    Coca, D.2
  • 3
    • 0024067409 scopus 로고
    • Identification of nonlinear output-affine systems using an orthogonal least-squares algorithm
    • BILLINGS, S. A., KORENBERG, M., and CHEN, S., 1988, Identification of nonlinear output-affine systems using an orthogonal least-squares algorithm. International Journal of Systems Science, 19, 1559-1568.
    • (1988) International Journal of Systems Science , vol.19 , pp. 1559-1568
    • Billings, S.A.1    Korenberg, M.2    Chen, S.3
  • 6
    • 84947626826 scopus 로고
    • Recursive hybrid algorithm for nonlinear system identification using radial basis function network
    • CHEN, S., BILLINGS, S. A., and GRANT, P. W., 1992, Recursive hybrid algorithm for nonlinear system identification using radial basis function network. International Journal of Control, 55, 1051-1070.
    • (1992) International Journal of Control , vol.55 , pp. 1051-1070
    • Chen, S.1    Billings, S.A.2    Grant, P.W.3
  • 7
    • 0024771664 scopus 로고
    • Orthogonal least squares methods and their application to non-linear system identification
    • CHEN, S., BILLINGS, S. A., and LUO, W., 1989, Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 50, 1873-1896.
    • (1989) International Journal of Control , vol.50 , pp. 1873-1896
    • Chen, S.1    Billings, S.A.2    Luo, W.3
  • 8
    • 0026116468 scopus 로고
    • Orthogonal least-squares learning algorithm for radial basis function networks
    • CHEN, S., COWAN, C. F. N., and GRANT, P. M., 1991, Orthogonal least-squares learning algorithm for radial basis function networks. IEEE Transactions Neural Networks, 2, 302-309.
    • (1991) IEEE Transactions Neural Networks , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 12
    • 0035895114 scopus 로고    scopus 로고
    • Non-linear system identification using wavelet multiresolution models
    • COCA, D., and BILLINGS, S. A., 2001, Non-linear system identification using wavelet multiresolution models. International Journal of Control, 74, 1718-1736.
    • (2001) International Journal of Control , vol.74 , pp. 1718-1736
    • Coca, D.1    Billings, S.A.2
  • 13
    • 0003833285 scopus 로고
    • Philadelphia, PA: Society for Industrial and Applied Mathematics
    • DAUBECHIES, I., 1992, Ten Lectures on Wavelets (Philadelphia, PA: Society for Industrial and Applied Mathematics).
    • (1992) Ten Lectures on Wavelets
    • Daubechies, I.1
  • 14
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • FRIEDMAN, J. H., 1991, Multivariate adaptive regression splines. The Annals of Statistics, 19, 1-67.
    • (1991) The Annals of Statistics , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 16
    • 0002271590 scopus 로고    scopus 로고
    • Approximation of continuous functions of several variables by an arbitrary nonlinear continuous function of one variable, linear functions, and their super-positions
    • GORBAN, A. N., 1998, Approximation of continuous functions of several variables by an arbitrary nonlinear continuous function of one variable, linear functions, and their super-positions. Applied Mathematics Letters, 11, 45-49.
    • (1998) Applied Mathematics Letters , vol.11 , pp. 45-49
    • Gorban, A.N.1
  • 19
    • 0035271447 scopus 로고    scopus 로고
    • Nonlinear model structure detection using optimum experimental design and orthogonal least squares
    • HONG, X., and HARRIS, C. J., 2001, Nonlinear model structure detection using optimum experimental design and orthogonal least squares. IEEE Transactions on Neural Networks, 12, 435-439.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 435-439
    • Hong, X.1    Harris, C.J.2
  • 20
    • 84947630316 scopus 로고
    • ASMOD - An algorithm for adaptive spline modelling of observational data
    • KAVLI, T., 1993, ASMOD - An algorithm for adaptive spline modelling of observational data. International Journal of Control, 58, 947-967.
    • (1993) International Journal of Control , vol.58 , pp. 947-967
    • Kavli, T.1
  • 22
    • 0022011031 scopus 로고
    • Input-output parametric models for non-linear systems (part I: Deterministic non-linear systems; part II: Stochastic non-linear systems)
    • LEONTARITIS, I. J., and BILLINGS, S. A., 1985, Input-output parametric models for non-linear systems (part I: deterministic non-linear systems; part II: stochastic non-linear systems). International Journal of Control, 41, 303-344.
    • (1985) International Journal of Control , vol.41 , pp. 303-344
    • Leontaritis, I.J.1    Billings, S.A.2
  • 25
    • 0000442460 scopus 로고
    • Nonlinear input/output modelling
    • PEARSON, R. K., 1995, Nonlinear input/output modelling, Journal of Process Control, 5, 197-211.
    • (1995) Journal of Process Control , vol.5 , pp. 197-211
    • Pearson, R.K.1
  • 28
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximations, and orthogonal least squares learning
    • WANG, L. X., and MENDEL, J. M., 1992, Fuzzy basis functions, universal approximations, and orthogonal least squares learning. IEEE Transactions on Neural Networks, 3, 807-814.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 807-814
    • Wang, L.X.1    Mendel, J.M.2
  • 29
    • 0038040955 scopus 로고    scopus 로고
    • Identification of time-varying systems using multi-resolution wavelet models
    • WEI, H. L., and BILLINGS, S. A., 2002, Identification of time-varying systems using multi-resolution wavelet models. International Journal of Systems Science, 33, 1217-1228.
    • (2002) International Journal of Systems Science , vol.33 , pp. 1217-1228
    • Wei, H.L.1    Billings, S.A.2
  • 31
    • 0742304416 scopus 로고    scopus 로고
    • Term and variable selection for nonlinear system identification
    • WEI, H. L., BILLINGS, S. A., and LIU, J., 2004, Term and variable selection for nonlinear system identification. International Journal of Control, 77, 86-110.
    • (2004) International Journal of Control , vol.77 , pp. 86-110
    • Wei, H.L.1    Billings, S.A.2    Liu, J.3
  • 32
    • 0031098254 scopus 로고    scopus 로고
    • Using wavelet network in nonparametric estimation
    • ZHANG, Q., 1997, Using wavelet network in nonparametric estimation. IEEE Transactions on Neural Networks, 8, 227-236.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , pp. 227-236
    • Zhang, Q.1
  • 34
    • 0030192825 scopus 로고    scopus 로고
    • Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks
    • ZHU, Q. M., and BILLINGS, S. A., 1996, Fast orthogonal identification of nonlinear stochastic models and radial basis function neural networks. International Journal of Control, 64, 871-886.
    • (1996) International Journal of Control , vol.64 , pp. 871-886
    • Zhu, Q.M.1    Billings, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.