메뉴 건너뛰기




Volumn 23, Issue 7-8, 2013, Pages 2451-2463

Gravitational search algorithm-optimized neural misuse detector with selected features by fuzzy grids-based association rules mining

Author keywords

Data mining; Feature selection; Fuzzy association rules; Fuzzy clustering; Gravitational search algorithm; Misuse detection; Neural network

Indexed keywords

ASSOCIATION RULES MINING; DATA PREPROCESSING; FUZZY ASSOCIATION RULE; FUZZY-ARTMAP NEURAL NETWORK; GRAVITATIONAL SEARCH ALGORITHMS; MACHINE LEARNING METHODS; MISUSE DETECTION; TRAINING PARAMETERS;

EID: 84887425153     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-1204-y     Document Type: Article
Times cited : (32)

References (97)
  • 1
    • 38049026782 scopus 로고    scopus 로고
    • Feature selection using rough-DPSO in anomaly intrusion detection
    • Part I
    • Zainal A, Maarof MA, Shamsuddin SM (2007) Feature selection using rough-DPSO in anomaly intrusion detection. Lect Notes Comput Sci 4705: 512-524, Part I.
    • (2007) Lect Notes Comput Sci , vol.4705 , pp. 512-524
    • Zainal, A.1    Maarof, M.A.2    Shamsuddin, S.M.3
  • 3
    • 43749117690 scopus 로고    scopus 로고
    • A new approach for evaluating agility in supply chains using fuzzy association rules mining
    • Jain V, Benyoucef L, Deshmukh SG (2008) A new approach for evaluating agility in supply chains using fuzzy association rules mining. Eng Appl Artif Intell 21: 367-385.
    • (2008) Eng Appl Artif Intell , vol.21 , pp. 367-385
    • Jain, V.1    Benyoucef, L.2    Deshmukh, S.G.3
  • 4
    • 84887440031 scopus 로고    scopus 로고
    • Feature selection using association word mining for classification
    • Jeong Ko S, Hyun Lee J (2001) Feature selection using association word mining for classification. Lect Notes Comput Sci 2113: 211-220.
    • (2001) Lect Notes Comput Sci , vol.2113 , pp. 211-220
    • Jeong, K.S.1    Hyun, L.J.2
  • 5
    • 56349123043 scopus 로고    scopus 로고
    • An expert system for detection of breast cancer based on association rules and neural network
    • Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Exp Syst Appl 36: 3465-3469.
    • (2009) Exp Syst Appl , vol.36 , pp. 3465-3469
    • Karabatak, M.1    Ince, M.C.2
  • 6
    • 69249232103 scopus 로고    scopus 로고
    • A new feature selection method based on association rules for diagnosis of erythemato-squamous diseases
    • Karabatak M, Ince MC (2009) A new feature selection method based on association rules for diagnosis of erythemato-squamous diseases. Exp Syst Appl 36: 12500-12505.
    • (2009) Exp Syst Appl , vol.36 , pp. 12500-12505
    • Karabatak, M.1    Ince, M.C.2
  • 7
    • 70350134739 scopus 로고    scopus 로고
    • The use of computational intelligence in intrusion detection systems: A review
    • Xiaonan Wu S, Banzhaf W (2010) The use of computational intelligence in intrusion detection systems: a review. Appl Soft Comput 10: 1-35.
    • (2010) Appl Soft Comput , vol.10 , pp. 1-35
    • Xiaonan, W.S.1    Banzhaf, W.2
  • 8
    • 81855168291 scopus 로고    scopus 로고
    • Intrusion diagnosis and prediction with expert system
    • Liu X, Fang C, Xiao D (2011) Intrusion diagnosis and prediction with expert system. Secur Commun Netw 4: 1483-1494.
    • (2011) Secur Commun Netw , vol.4 , pp. 1483-1494
    • Liu, X.1    Fang, C.2    Xiao, D.3
  • 10
    • 58549089680 scopus 로고    scopus 로고
    • Intrusion detection using fuzzy association rules
    • Tajbakhsh A, Rahmati M, Mirzaei A (2009) Intrusion detection using fuzzy association rules. Appl Soft Comput 9: 462-469.
    • (2009) Appl Soft Comput , vol.9 , pp. 462-469
    • Tajbakhsh, A.1    Rahmati, M.2    Mirzaei, A.3
  • 11
  • 12
    • 34250801472 scopus 로고    scopus 로고
    • A hybrid machine learning approach to network anomaly detection
    • Shon T, Moon J (2007) A hybrid machine learning approach to network anomaly detection. Inf Sci 177: 3799-3821.
    • (2007) Inf Sci , vol.177 , pp. 3799-3821
    • Shon, T.1    Moon, J.2
  • 13
    • 33947581868 scopus 로고    scopus 로고
    • Hybrid flexible neural-tree-based intrusion detection systems
    • Chen Y, Abraham A, Yang B (2007) Hybrid flexible neural-tree-based intrusion detection systems. Int J Intell Syst 22: 337-352.
    • (2007) Int J Intell Syst , vol.22 , pp. 337-352
    • Chen, Y.1    Abraham, A.2    Yang, B.3
  • 14
    • 0036647172 scopus 로고    scopus 로고
    • Multivariate statistical analysis of audit trials for host-based intrusion detection
    • Ye N, Emran SM, Chen Q, Vilbert S (2002) Multivariate statistical analysis of audit trials for host-based intrusion detection. IEEE Trans Comput 51: 810-820.
    • (2002) IEEE Trans Comput , vol.51 , pp. 810-820
    • Ye, N.1    Emran, S.M.2    Chen, Q.3    Vilbert, S.4
  • 19
    • 26444488624 scopus 로고    scopus 로고
    • Network-based anomaly detection using an Elman network
    • Cheng E, Jin H, Han Z, Sun J (2005) Network-based anomaly detection using an Elman network. Lect Notes Comput Sci 3619: 471-480.
    • (2005) Lect Notes Comput Sci , vol.3619 , pp. 471-480
    • Cheng, E.1    Jin, H.2    Han, Z.3    Sun, J.4
  • 20
    • 33750516723 scopus 로고    scopus 로고
    • Adaptive anomaly detection with evolving connectionist systems
    • Special Issue on Network and Information Security: A Computational Intelligence Approach
    • Liao Y, Vemuri VR, Pasos A (2007) Adaptive anomaly detection with evolving connectionist systems. J Netw Comput Appl 30: 60-80 (Special Issue on Network and Information Security: A Computational Intelligence Approach).
    • (2007) J Netw Comput Appl , vol.30 , Issue.SPEC.ISSUE. , pp. 60-80
    • Liao, Y.1    Vemuri, V.R.2    Pasos, A.3
  • 21
    • 34250213201 scopus 로고    scopus 로고
    • Training all the KDD data set to classify and detect attacks
    • Beghdad R (2007) Training all the KDD data set to classify and detect attacks. Neural Netw World 17: 81-91.
    • (2007) Neural Netw World , vol.17 , pp. 81-91
    • Beghdad, R.1
  • 24
    • 21044433766 scopus 로고    scopus 로고
    • Training genetic programming on half a million patterns: an example from anomaly detection
    • Song D, Heywood MI, Zincir-Heywood AN (2005) Training genetic programming on half a million patterns: an example from anomaly detection. IEEE Trans Evol Comput 9: 225-239.
    • (2005) IEEE Trans Evol Comput , vol.9 , pp. 225-239
    • Song, D.1    Heywood, M.I.2    Zincir-Heywood, A.N.3
  • 26
    • 33744529638 scopus 로고    scopus 로고
    • Evolutionary neural networks for anomaly detection based on the behavior of a program
    • Han SJ, Cho SB (2006) Evolutionary neural networks for anomaly detection based on the behavior of a program. IEEE Trans Syst Man Cybernet-Part B 36: 559-570.
    • (2006) IEEE Trans Syst Man Cybernet-Part B , vol.36 , pp. 559-570
    • Han, S.J.1    Cho, S.B.2
  • 27
    • 0036321445 scopus 로고    scopus 로고
    • Use of K-nearest neighbor classifier for intrusion detection
    • Liao Y, Vemuri VR (2002) Use of K-nearest neighbor classifier for intrusion detection. Comput Secur 21: 439-448.
    • (2002) Comput Secur , vol.21 , pp. 439-448
    • Liao, Y.1    Vemuri, V.R.2
  • 32
    • 53049099150 scopus 로고    scopus 로고
    • Critical study of neural networks in detecting intrusions
    • Beghdad R (2008) Critical study of neural networks in detecting intrusions. Comput Secur 27: 168-175.
    • (2008) Comput Secur , vol.27 , pp. 168-175
    • Beghdad, R.1
  • 33
    • 84872167049 scopus 로고    scopus 로고
    • Effects of feature reduction on the performance of attack recognition by static and dynamic neural networks
    • Sheikhan M, Jadidi Z, Beheshti M (2010) Effects of feature reduction on the performance of attack recognition by static and dynamic neural networks. World Appl Sci J 8: 302-308.
    • (2010) World Appl Sci J , vol.8 , pp. 302-308
    • Sheikhan, M.1    Jadidi, Z.2    Beheshti, M.3
  • 34
    • 84865637442 scopus 로고    scopus 로고
    • Intrusion detection using reduced-size RNN based on feature grouping
    • Sheikhan M, Jadidi Z, Farrokhi A (2012) Intrusion detection using reduced-size RNN based on feature grouping. Neural Comput Appl 21: 1185-1190.
    • (2012) Neural Comput Appl , vol.21 , pp. 1185-1190
    • Sheikhan, M.1    Jadidi, Z.2    Farrokhi, A.3
  • 35
    • 82455199118 scopus 로고    scopus 로고
    • Improved competitive learning neural networks for network intrusion and fraud detection
    • Lei JZ, Ghorbani AA (2012) Improved competitive learning neural networks for network intrusion and fraud detection. Neurocomputing 75: 135-145.
    • (2012) Neurocomputing , vol.75 , pp. 135-145
    • Lei, J.Z.1    Ghorbani, A.A.2
  • 37
    • 1842712339 scopus 로고    scopus 로고
    • A genetic clustering method for intrusion detection
    • Lin Y, Chen K, Liao X (2004) A genetic clustering method for intrusion detection. Patt Recogn 37: 924-927.
    • (2004) Patt Recogn , vol.37 , pp. 924-927
    • Lin, Y.1    Chen, K.2    Liao, X.3
  • 38
    • 0347606556 scopus 로고    scopus 로고
    • Winning the KDD 99 classification cup: bagged boosting
    • Pfahringer B (2000) Winning the KDD 99 classification cup: bagged boosting. J SIGKDD Explor 1: 65-66.
    • (2000) J SIGKDD Explor , vol.1 , pp. 65-66
    • Pfahringer, B.1
  • 39
  • 41
    • 33750528950 scopus 로고    scopus 로고
    • Intrusion detection using a fuzzy genetic-based learning algorithm
    • Abadeh MS, Habibi J, Lucas C (2005) Intrusion detection using a fuzzy genetic-based learning algorithm. J Netw Comput Appl 30: 414-428.
    • (2005) J Netw Comput Appl , vol.30 , pp. 414-428
    • Abadeh, M.S.1    Habibi, J.2    Lucas, C.3
  • 42
    • 70350098492 scopus 로고    scopus 로고
    • An intrusion detection approach based on understandable neural network trees
    • Xu Q, Pei W, Yang L, Zhao Q (2006) An intrusion detection approach based on understandable neural network trees. Int J Comput Sci Netw Secur 6: 229-234.
    • (2006) Int J Comput Sci Netw Secur , vol.6 , pp. 229-234
    • Xu, Q.1    Pei, W.2    Yang, L.3    Zhao, Q.4
  • 43
    • 79952059044 scopus 로고    scopus 로고
    • Misuse detection using hybrid of association rule mining and connectionist modeling
    • Special Issue of Computer & IT
    • Sheikhan M, Jadidi Z (2009) Misuse detection using hybrid of association rule mining and connectionist modeling. World Appl Sci J 7 (Special Issue of Computer & IT): 31-37.
    • (2009) World Appl Sci J , vol.7 , Issue.SPEC.ISSUE. , pp. 31-37
    • Sheikhan, M.1    Jadidi, Z.2
  • 44
    • 84864924391 scopus 로고    scopus 로고
    • Combination of Elman neural network and classification-based predictive association rules to improve computer networks' security
    • Special Issue of Computer & IT
    • Sheikhan M, Gharavian D (2009) Combination of Elman neural network and classification-based predictive association rules to improve computer networks' security. World Appl Sci J 7 (Special Issue of Computer & IT): 80-86.
    • (2009) World Appl Sci J , vol.7 , Issue.SPEC.ISSUE. , pp. 80-86
    • Sheikhan, M.1    Gharavian, D.2
  • 45
    • 67649726426 scopus 로고    scopus 로고
    • Building lightweight intrusion detection system using wrapper-based feature selection mechanisms
    • Li W, Wang JL, Tian ZH, Lu TB, Young C (2009) Building lightweight intrusion detection system using wrapper-based feature selection mechanisms. Comput Secur 28: 466-475.
    • (2009) Comput Secur , vol.28 , pp. 466-475
    • Li, W.1    Wang, J.L.2    Tian, Z.H.3    Lu, T.B.4    Young, C.5
  • 46
    • 79953037239 scopus 로고    scopus 로고
    • Trusted intrusion detection architecture for high-speed networks based on traffic classification, load balancing and high availability mechanism
    • Meharouech S, Bouhoula A, Abbes T (2011) Trusted intrusion detection architecture for high-speed networks based on traffic classification, load balancing and high availability mechanism. Secur Commun Netw 4: 384-394.
    • (2011) Secur Commun Netw , vol.4 , pp. 384-394
    • Meharouech, S.1    Bouhoula, A.2    Abbes, T.3
  • 47
    • 33845998197 scopus 로고    scopus 로고
    • Survey and taxonomy of feature selection algorithms in intrusion detection system
    • Chen Y, Li Y, Cheng X-Q, Guo L (2006) Survey and taxonomy of feature selection algorithms in intrusion detection system. Lect Notes Comput Sci 4318: 153-167.
    • (2006) Lect Notes Comput Sci , vol.4318 , pp. 153-167
    • Chen, Y.1    Li, Y.2    Cheng, X.-Q.3    Guo, L.4
  • 48
    • 81855197007 scopus 로고    scopus 로고
    • An efficient intrusion detection system based on support vector machines and gradually feature removal method
    • Li Y, Xia J, Zhang S, Yan J, Ai X, Dai K (2012) An efficient intrusion detection system based on support vector machines and gradually feature removal method. Exp Syst Appl 39: 424-430.
    • (2012) Exp Syst Appl , vol.39 , pp. 424-430
    • Li, Y.1    Xia, J.2    Zhang, S.3    Yan, J.4    Ai, X.5    Dai, K.6
  • 49
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection system
    • Chebrolu S, Abraham A, Thomas JP (2005) Feature deduction and ensemble design of intrusion detection system. Comput Secur 24: 295-307.
    • (2005) Comput Secur , vol.24 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 51
    • 84856248608 scopus 로고    scopus 로고
    • An information theoretic approach for feature selection
    • Kumar G, Kumar K (2012) An information theoretic approach for feature selection. Secur Commun Netw 5: 178-185.
    • (2012) Secur Commun Netw , vol.5 , pp. 178-185
    • Kumar, G.1    Kumar, K.2
  • 52
    • 33750331605 scopus 로고    scopus 로고
    • Feature selection and classification using hybrid flexible neural tree
    • Chen Y, Abraham A, Yang J (2006) Feature selection and classification using hybrid flexible neural tree. Neurocomputing 70: 305-313.
    • (2006) Neurocomputing , vol.70 , pp. 305-313
    • Chen, Y.1    Abraham, A.2    Yang, J.3
  • 53
    • 26844565512 scopus 로고    scopus 로고
    • Principal component neural networks based intrusion feature extraction and detection using SVM
    • Gao H-H, Yang H-H, Wang X-Y (2005) Principal component neural networks based intrusion feature extraction and detection using SVM. Lect Notes Comput Sci 3611: 21-27.
    • (2005) Lect Notes Comput Sci , vol.3611 , pp. 21-27
    • Gao, H.-H.1    Yang, H.-H.2    Wang, X.-Y.3
  • 54
    • 81855221688 scopus 로고    scopus 로고
    • Decision tree based light weight intrusion detection using a wrapper approach
    • Sivatha Sindhu SS, Geetha S, Kannan A (2012) Decision tree based light weight intrusion detection using a wrapper approach. Exp Syst Appl 39: 129-141.
    • (2012) Exp Syst Appl , vol.39 , pp. 129-141
    • Sivatha Sindhu, S.S.1    Geetha, S.2    Kannan, A.3
  • 55
    • 84864772502 scopus 로고    scopus 로고
    • An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection
    • Lin S-W, Ying K-C, Lee C-Y, Lee Z-J (2012) An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection. Appl Soft Comput 12: 3285-3290.
    • (2012) Appl Soft Comput , vol.12 , pp. 3285-3290
    • Lin, S.-W.1    Ying, K.-C.2    Lee, C.-Y.3    Lee, Z.-J.4
  • 56
    • 84863478979 scopus 로고    scopus 로고
    • A hybrid network intrusion detection system using simplified swarm optimization (SSO)
    • Chung YY, Wahid N (2012) A hybrid network intrusion detection system using simplified swarm optimization (SSO). Appl Soft Comput 12: 3014-3022.
    • (2012) Appl Soft Comput , vol.12 , pp. 3014-3022
    • Chung, Y.Y.1    Wahid, N.2
  • 57
    • 84862789151 scopus 로고    scopus 로고
    • Feature evaluation and selection with cooperative game theory
    • Sun X, Liu Y, Li J, Zhu J, Chen H, Liu X (2012) Feature evaluation and selection with cooperative game theory. Patt Recogn 45: 2992-3002.
    • (2012) Patt Recogn , vol.45 , pp. 2992-3002
    • Sun, X.1    Liu, Y.2    Li, J.3    Zhu, J.4    Chen, H.5    Liu, X.6
  • 58
    • 0037241902 scopus 로고    scopus 로고
    • Incorporating fuzzy concepts along with dynamic tunneling for fast and robust training of multilayer perceptrons
    • RoyChowdhury P, Shukla KK (2003) Incorporating fuzzy concepts along with dynamic tunneling for fast and robust training of multilayer perceptrons. Neurocomputing 50: 319-340.
    • (2003) Neurocomputing , vol.50 , pp. 319-340
    • RoyChowdhury, P.1    Shukla, K.K.2
  • 59
    • 0000743347 scopus 로고
    • Training feedforward neural networks using genetic algorithms
    • Montana DJ, Davis L (1989) Training feedforward neural networks using genetic algorithms. Mach Learn 1: 762-767.
    • (1989) Mach Learn , vol.1 , pp. 762-767
    • Montana, D.J.1    Davis, L.2
  • 60
    • 0030271252 scopus 로고    scopus 로고
    • Efficient learning of NN-MLP based on individual evolutionary algorithm
    • Zhao Q, Higuchi T (1996) Efficient learning of NN-MLP based on individual evolutionary algorithm. Neurocomputing 13: 201-215.
    • (1996) Neurocomputing , vol.13 , pp. 201-215
    • Zhao, Q.1    Higuchi, T.2
  • 61
    • 0034508915 scopus 로고    scopus 로고
    • Reliable classification using neural network: a genetic algorithm and back propagation computation
    • Sexton RS, Dorsey RE (2000) Reliable classification using neural network: a genetic algorithm and back propagation computation. Decis Supp Syst 30: 11-22.
    • (2000) Decis Supp Syst , vol.30 , pp. 11-22
    • Sexton, R.S.1    Dorsey, R.E.2
  • 62
    • 67349281255 scopus 로고    scopus 로고
    • Evolutionary artificial neural network design and training for wood veneer classification
    • Castellani M, Rowlands H (2009) Evolutionary artificial neural network design and training for wood veneer classification. Eng Appl Artif Intell 22: 732-741.
    • (2009) Eng Appl Artif Intell , vol.22 , pp. 732-741
    • Castellani, M.1    Rowlands, H.2
  • 63
    • 34250867328 scopus 로고    scopus 로고
    • Bayesian training of neural networks using genetic programming
    • Marwala T (2007) Bayesian training of neural networks using genetic programming. Patt Recogn Lett 28: 1452-1458.
    • (2007) Patt Recogn Lett , vol.28 , pp. 1452-1458
    • Marwala, T.1
  • 67
    • 77957841884 scopus 로고    scopus 로고
    • Evaluation of global and local training techniques over feed-forward neural network architecture spaces for computer-aided medical diagnosis
    • Ince T, Kiranyaz S, Pulkkinen J, Gabbouj M (2010) Evaluation of global and local training techniques over feed-forward neural network architecture spaces for computer-aided medical diagnosis. Exp Syst Appl 37: 8450-8461.
    • (2010) Exp Syst Appl , vol.37 , pp. 8450-8461
    • Ince, T.1    Kiranyaz, S.2    Pulkkinen, J.3    Gabbouj, M.4
  • 68
    • 84871713710 scopus 로고    scopus 로고
    • The application of the PSO based BP network in short-term load forecasting
    • Pian Z, Li S, Zhang H, Zhang N (2012) The application of the PSO based BP network in short-term load forecasting. Phys Procedia 24: 626-632.
    • (2012) Phys Procedia , vol.24 , pp. 626-632
    • Pian, Z.1    Li, S.2    Zhang, H.3    Zhang, N.4
  • 69
    • 38649118854 scopus 로고    scopus 로고
    • Evolving artificial neural networks using an improved PSO and DPSO
    • Yu J, Wang S, Xi L (2008) Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 71: 1054-1060.
    • (2008) Neurocomputing , vol.71 , pp. 1054-1060
    • Yu, J.1    Wang, S.2    Xi, L.3
  • 70
    • 84863441795 scopus 로고    scopus 로고
    • Neural identification of dynamic systems on FPGA with improved PSO learning
    • Cavuslu MA, Karakuzu C, Karakaya F (2012) Neural identification of dynamic systems on FPGA with improved PSO learning. Appl Soft Comput 12: 2707-2718.
    • (2012) Appl Soft Comput , vol.12 , pp. 2707-2718
    • Cavuslu, M.A.1    Karakuzu, C.2    Karakaya, F.3
  • 71
    • 79551685695 scopus 로고    scopus 로고
    • Forecasting stock indices using radial basis function neural networks optimized by artificial swarm algorithm
    • Shen W, Guo X, Wu C, Wu D (2011) Forecasting stock indices using radial basis function neural networks optimized by artificial swarm algorithm. Knowledge-Based Syst 24: 378-385.
    • (2011) Knowledge-Based Syst , vol.24 , pp. 378-385
    • Shen, W.1    Guo, X.2    Wu, C.3    Wu, D.4
  • 72
    • 81155162531 scopus 로고    scopus 로고
    • Training neural networks with harmony search algorithms for classification problems
    • Kulluk S, Ozbakir L, Baykasoglu A (2012) Training neural networks with harmony search algorithms for classification problems. Eng Appl Artif Intell 25: 11-19.
    • (2012) Eng Appl Artif Intell , vol.25 , pp. 11-19
    • Kulluk, S.1    Ozbakir, L.2    Baykasoglu, A.3
  • 73
    • 84862858496 scopus 로고    scopus 로고
    • Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm
    • Mirjalili SA, Mohd Hashim SZ, Moradian Sardroudi H (2012) Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm. Appl Math Comput 218: 11125-11137.
    • (2012) Appl Math Comput , vol.218 , pp. 11125-11137
    • Mirjalili, S.A.1    Mohd Hashim, S.Z.2    Moradian Sardroudi, H.3
  • 74
    • 29844455331 scopus 로고    scopus 로고
    • Forecasting of ozone level in time series using MLP model with a novel hybrid training algorithm
    • Wang D, Lu W-Z (2006) Forecasting of ozone level in time series using MLP model with a novel hybrid training algorithm. Atmos Environ 40: 913-924.
    • (2006) Atmos Environ , vol.40 , pp. 913-924
    • Wang, D.1    Lu, W.-Z.2
  • 75
    • 33847379879 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization-back propagation algorithm for feedforward neural network training
    • Zhang JR, Zhang J, Lok TM, Lyu MR (2007) A hybrid particle swarm optimization-back propagation algorithm for feedforward neural network training. Appl Math Comput 185: 1026-1037.
    • (2007) Appl Math Comput , vol.185 , pp. 1026-1037
    • Zhang, J.R.1    Zhang, J.2    Lok, T.M.3    Lyu, M.R.4
  • 76
    • 81855195351 scopus 로고    scopus 로고
    • A hybrid particle swarm optimization and its application in neural networks
    • Leung SYS, Tang Y, Wong WK (2012) A hybrid particle swarm optimization and its application in neural networks. Exp Syst Appl 39: 395-405.
    • (2012) Exp Syst Appl , vol.39 , pp. 395-405
    • Leung, S.Y.S.1    Tang, Y.2    Wong, W.K.3
  • 78
  • 83
    • 76349083382 scopus 로고    scopus 로고
    • Mining fuzzy frequent itemsets for hierarchical document clustering
    • Chen C-L, Tseng FSC, Liang T (2010) Mining fuzzy frequent itemsets for hierarchical document clustering. Inf Process Manag 46: 193-211.
    • (2010) Inf Process Manag , vol.46 , pp. 193-211
    • Chen, C.-L.1    Tseng, F.S.C.2    Liang, T.3
  • 84
    • 84862783731 scopus 로고    scopus 로고
    • Using a fuzzy association rule mining approach to identify the financial data association
    • Ho GTS, Ip WH, Wu CH, Tse YK (2012) Using a fuzzy association rule mining approach to identify the financial data association. Exp Syst Appl 39: 9054-9063.
    • (2012) Exp Syst Appl , vol.39 , pp. 9054-9063
    • Ho, G.T.S.1    Ip, W.H.2    Wu, C.H.3    Tse, Y.K.4
  • 86
    • 0037390557 scopus 로고    scopus 로고
    • Mining fuzzy association rules in a bank-account database
    • Au W-H, Chan KCC (2003) Mining fuzzy association rules in a bank-account database. IEEE Trans Fuzzy Syst 11: 238-248.
    • (2003) IEEE Trans Fuzzy Syst , vol.11 , pp. 238-248
    • Au, W.-H.1    Chan, K.C.C.2
  • 87
    • 79952791120 scopus 로고    scopus 로고
    • Available on
    • Stolfo SJ (1999) KDD-99 Dataset. Available on http://www. kdd. ics. uci. edu/databases/kddcup99/kddcup99. html kddcup99. html.
    • (1999) KDD-99 Dataset
    • Stolfo, S.J.1
  • 88
    • 38249005526 scopus 로고
    • Fuzzy implication operators and generalized fuzzy method of cases
    • Ruan D, Kerre EE (1993) Fuzzy implication operators and generalized fuzzy method of cases. Fuzzy Sets Syst 54: 23-38.
    • (1993) Fuzzy Sets Syst , vol.54 , pp. 23-38
    • Ruan, D.1    Kerre, E.E.2
  • 89
    • 33745955634 scopus 로고    scopus 로고
    • Effect of similar behaving attributes in mining of fuzzy association rules in the large databases
    • Farzanyar Z, Kangavari M, Hashemi S (2006) Effect of similar behaving attributes in mining of fuzzy association rules in the large databases. Lect Notes Comput Sci 3980: 1100-1109.
    • (2006) Lect Notes Comput Sci , vol.3980 , pp. 1100-1109
    • Farzanyar, Z.1    Kangavari, M.2    Hashemi, S.3
  • 90
    • 0037395976 scopus 로고    scopus 로고
    • Discovering fuzzy association rules using fuzzy partition methods
    • Hu YC, Chen RS, Tzeng GH (2003) Discovering fuzzy association rules using fuzzy partition methods. Knowledge-Based Syst 16: 137-147.
    • (2003) Knowledge-Based Syst , vol.16 , pp. 137-147
    • Hu, Y.C.1    Chen, R.S.2    Tzeng, G.H.3
  • 91
    • 0021583718 scopus 로고
    • FCM: the fuzzy C-means clustering algorithm
    • Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy C-means clustering algorithm. Comput Geosci 10: 191-203.
    • (1984) Comput Geosci , vol.10 , pp. 191-203
    • Bezdek, J.C.1    Ehrlich, R.2    Full, W.3
  • 92
    • 84864958534 scopus 로고    scopus 로고
    • PNrule: A new framework for learning classifier models in data mining (a case-study in network intrusion detection)
    • Report No. RC-21719
    • Agrawal R, Joshi MV (2000) PNrule: a new framework for learning classifier models in data mining (a case-study in network intrusion detection). IBM Research Division, Report No. RC-21719.
    • (2000) IBM Research Division
    • Agrawal, R.1    Joshi, M.V.2
  • 93
    • 1642354876 scopus 로고    scopus 로고
    • KDD classifier learning contest: LLSoft's results overview
    • Levin I (2000) KDD classifier learning contest: LLSoft's results overview. J SIGKDD Explor 1: 67-75.
    • (2000) J SIGKDD Explor , vol.1 , pp. 67-75
    • Levin, I.1
  • 95
    • 0242637092 scopus 로고    scopus 로고
    • Detecting intrusion with rule-based integration of multiple models
    • Han SJ, Cho SB (2003) Detecting intrusion with rule-based integration of multiple models. J Comput Secur 22: 613-623.
    • (2003) J Comput Secur , vol.22 , pp. 613-623
    • Han, S.J.1    Cho, S.B.2
  • 96
    • 83955162952 scopus 로고    scopus 로고
    • Mining axiomatic fuzzy set association rules for classification problems
    • Wang X, Liu X, Pedrycz W, Zhu X, Hu G (2012) Mining axiomatic fuzzy set association rules for classification problems. Europ J Oper Res 218: 202-210.
    • (2012) Europ J Oper Res , vol.218 , pp. 202-210
    • Wang, X.1    Liu, X.2    Pedrycz, W.3    Zhu, X.4    Hu, G.5
  • 97
    • 78751634658 scopus 로고    scopus 로고
    • Mining fuzzy rules using an artificial immune system with fuzzy partition learning
    • Me{ogonek}żyk E, Unold O (2011) Mining fuzzy rules using an artificial immune system with fuzzy partition learning. Appl Soft Comput 11: 1965-1974.
    • (2011) Appl Soft Comput , vol.11 , pp. 1965-1974
    • Mezyk, E.1    Unold, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.