메뉴 건너뛰기




Volumn 28, Issue 6, 2009, Pages 466-475

Building lightweight intrusion detection system using wrapper-based feature selection mechanisms

Author keywords

Feature selection; Intrusion detection system; Modified linear SVMs; Modified RMHC; Network security

Indexed keywords

COMPUTATIONAL COSTS; DATA SETS; DETECTION PERFORMANCE; FEATURE SELECTION; FEATURE SELECTION ALGORITHM; FEATURE SELECTION METHODS; FEATURE SUBSET; HIGH DETECTION RATE; HILL CLIMBING; INTRUSION DETECTION SYSTEM; INTRUSION DETECTION SYSTEMS; ITERATIVE PROCEDURES; LINEAR SUPPORT VECTOR MACHINES; MODIFIED LINEAR SVMS; MODIFIED RMHC; NETWORK INFRASTRUCTURE; NETWORK RESOURCE; RANDOM MUTATION; RESEARCH TOPICS; SEARCH STRATEGIES; SPEED-UP; WRAPPER APPROACH; WRAPPER-BASED FEATURE SELECTION;

EID: 67649726426     PISSN: 01674048     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cose.2009.01.001     Document Type: Article
Times cited : (95)

References (21)
  • 2
    • 34147120123 scopus 로고    scopus 로고
    • Arreola Karina Zapien, Fehr Janis, Burkhardt Hans. Fast support vector machine classification using linear SVMs. In: The 18th international conference on pattern recognition 0-7695-2521-0/06; 2006.
    • Arreola Karina Zapien, Fehr Janis, Burkhardt Hans. Fast support vector machine classification using linear SVMs. In: The 18th international conference on pattern recognition 0-7695-2521-0/06; 2006.
  • 4
    • 0037381038 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
    • Cao L.J., Chua K.S., Chong W.K., Lee H.P., and Gu Q.M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55 (2003) 321-336
    • (2003) Neurocomputing , vol.55 , pp. 321-336
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3    Lee, H.P.4    Gu, Q.M.5
  • 6
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 46 1-3 (2002) 389-422
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 8
    • 67649688891 scopus 로고    scopus 로고
    • Data available:
    • KDD Cup. Data available: (1999). http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
    • (1999)
    • KDD Cup1
  • 9
    • 24944485860 scopus 로고    scopus 로고
    • Fusions of GA and SVM for anomaly detection in intrusion detection system
    • Advances in Neural Networks. Wang J., Liao X., and Yi Z. (Eds), Springer-Verlag, Berlin Heidelberg New York
    • Kim D., Nguyen H.-N., Ohn S.-Y., and Park J. Fusions of GA and SVM for anomaly detection in intrusion detection system. In: Wang J., Liao X., and Yi Z. (Eds). Advances in Neural Networks. Lecture Notes in Computer Science vol. 3498 (2005), Springer-Verlag, Berlin Heidelberg New York 415-420
    • (2005) Lecture Notes in Computer Science , vol.3498 , pp. 415-420
    • Kim, D.1    Nguyen, H.-N.2    Ohn, S.-Y.3    Park, J.4
  • 10
  • 11
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artificial Intelligence 97 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 13
    • 0033640901 scopus 로고    scopus 로고
    • "Comparison of algorithms that select features for pattern classifiers
    • Kudo M., and Sklansky J. "Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 1 (2000) 25-41
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 15
    • 67649734173 scopus 로고    scopus 로고
    • Lee Y., and Mangasarian O. (Eds), 2001 SIAM International Conference, Chicago, Philadelphia
    • In: Lee Y., and Mangasarian O. (Eds). RSVM: Reduced Support Vector Machines (2001), 2001 SIAM International Conference, Chicago, Philadelphia
    • (2001) RSVM: Reduced Support Vector Machines
  • 16
    • 33744922954 scopus 로고    scopus 로고
    • Toward modeling lightweight intrusion detection system through correlation-based hybrid feature selection
    • Information Security and Cryptology. Feng D., Lin D., and Yung M. (Eds), Springer-Verlag, Berlin Heidelberg New York
    • Park J., Shazzad, Sazzad K.M., and Kim D. Toward modeling lightweight intrusion detection system through correlation-based hybrid feature selection. In: Feng D., Lin D., and Yung M. (Eds). Information Security and Cryptology. Lecture Notes in Computer Science vol. 3822 (2005), Springer-Verlag, Berlin Heidelberg New York 279-289
    • (2005) Lecture Notes in Computer Science , vol.3822 , pp. 279-289
    • Park, J.1    Shazzad2    Sazzad, K.M.3    Kim, D.4
  • 21
    • 67649737200 scopus 로고    scopus 로고
    • Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weighted-based approach
    • in press
    • Wolf Lior, Shashua Amnon. Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weighted-based approach. Journal of Machine Learning Research, in press.
    • Journal of Machine Learning Research
    • Lior, W.1    Amnon, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.