메뉴 건너뛰기




Volumn 28, Issue 1-2, 2009, Pages 18-28

Anomaly-based network intrusion detection: Techniques, systems and challenges

Author keywords

Anomaly detection; Assessment; IDS systems and platforms; Intrusion detection; Network security; Threat

Indexed keywords

INTERNET; METROPOLITAN AREA NETWORKS; NETWORK SECURITY; PROJECT MANAGEMENT;

EID: 57849130705     PISSN: 01674048     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cose.2008.08.003     Document Type: Article
Times cited : (1484)

References (50)
  • 3
    • 57849110648 scopus 로고    scopus 로고
    • Axelsson S. Research in intrusion detection systems: a survey. Technical report. Chalmers University of Technology. Goteborg 1998.
    • Axelsson S. Research in intrusion detection systems: a survey. Technical report. Chalmers University of Technology. Goteborg 1998.
  • 4
    • 84928016636 scopus 로고    scopus 로고
    • The Base-rate fallacy and its implications for the difficulty of intrusion detection
    • Axelsson S. The Base-rate fallacy and its implications for the difficulty of intrusion detection. ACM Transactions on Information and System Security 3 (2000) 186-205
    • (2000) ACM Transactions on Information and System Security , vol.3 , pp. 186-205
    • Axelsson, S.1
  • 6
    • 78149381260 scopus 로고    scopus 로고
    • Bermúdez-Edo M., Salazar-Hernández R., Díaz-Verdejo J.E., García-Teodoro P. Proposals on assessment environments for anomaly-based network intrusion detection systems. LNCS 4347; 2006. pp. 210-221.
    • Bermúdez-Edo M., Salazar-Hernández R., Díaz-Verdejo J.E., García-Teodoro P. Proposals on assessment environments for anomaly-based network intrusion detection systems. LNCS 4347; 2006. pp. 210-221.
  • 7
    • 0039253819 scopus 로고    scopus 로고
    • Breunig M., Kriegel H.P., Ng R.T., Sander J. LOF: identifying density-based local outliers. In: Proceedings of the ACM SIGMOD, International Conference on Management of Data; 2000. pp. 93-104.
    • Breunig M., Kriegel H.P., Ng R.T., Sander J. LOF: identifying density-based local outliers. In: Proceedings of the ACM SIGMOD, International Conference on Management of Data; 2000. pp. 93-104.
  • 8
    • 57849088366 scopus 로고    scopus 로고
    • Bridges S.M., Vaughn R.B. Fuzzy data mining and genetic algorithms applied to intrusion detection. In: Proceedings of the National Information Systems Security Conference; 2000. pp. 13-31.
    • Bridges S.M., Vaughn R.B. Fuzzy data mining and genetic algorithms applied to intrusion detection. In: Proceedings of the National Information Systems Security Conference; 2000. pp. 13-31.
  • 9
    • 57849141798 scopus 로고    scopus 로고
    • Cansian A.M., Moreira E., Carvalho A., Bonifacio J.M. Network intrusion detection using neural networks. In: International Conference on Computational Intelligence and Multimedia Applications (ICCMA'97); 1997. pp. 276-280.
    • Cansian A.M., Moreira E., Carvalho A., Bonifacio J.M. Network intrusion detection using neural networks. In: International Conference on Computational Intelligence and Multimedia Applications (ICCMA'97); 1997. pp. 276-280.
  • 10
    • 57849153093 scopus 로고    scopus 로고
    • Cohen W.W. Fast effective rule induction. In: Proceedings 12th International Conference on Machine Learning; 1995., pp. 115-123.
    • Cohen W.W. Fast effective rule induction. In: Proceedings 12th International Conference on Machine Learning; 1995., pp. 115-123.
  • 11
    • 0026850007 scopus 로고    scopus 로고
    • Debar H., Becker M., Siboni, D. A neural network component for an intrusion detection system. In: IEEE Symposium on Research in Computer Security and Privacy; 1992. pp. 240-250.
    • Debar H., Becker M., Siboni, D. A neural network component for an intrusion detection system. In: IEEE Symposium on Research in Computer Security and Privacy; 1992. pp. 240-250.
  • 16
    • 0033681199 scopus 로고    scopus 로고
    • Dickerson J.E. Fuzzy network profiling for intrusion detection. In: Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society (NAFIPS); 2000. pp. 301-306.
    • Dickerson J.E. Fuzzy network profiling for intrusion detection. In: Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society (NAFIPS); 2000. pp. 301-306.
  • 17
  • 19
    • 27544495468 scopus 로고    scopus 로고
    • Estévez-Tapiador J.M., García-Teodoro P., Díaz-Verdejo J.E. Detection of web-based attacks through Markovian protocol parsing. In: Proc. ISCC05; 2005 pp. 457-462.
    • Estévez-Tapiador J.M., García-Teodoro P., Díaz-Verdejo J.E. Detection of web-based attacks through Markovian protocol parsing. In: Proc. ISCC05; 2005 pp. 457-462.
  • 20
    • 4444266989 scopus 로고    scopus 로고
    • Prefix-preserving IP address anonymization: measurement-based security evaluation and a new cryptography-based scheme
    • Fan J., Xu J., Ammar M.H., and Moon S.B. Prefix-preserving IP address anonymization: measurement-based security evaluation and a new cryptography-based scheme. Computers Networks 46 2 (2004) 253-272
    • (2004) Computers Networks , vol.46 , Issue.2 , pp. 253-272
    • Fan, J.1    Xu, J.2    Ammar, M.H.3    Moon, S.B.4
  • 21
    • 0030285403 scopus 로고    scopus 로고
    • The KDD process for extracting useful knowledge from volumes of data
    • Fayyad U., Piatetsky-Shapiro G., and Smyth P. The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM 29 11 (1996) 27-34
    • (1996) Communications of the ACM , vol.29 , Issue.11 , pp. 27-34
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 22
    • 57849122670 scopus 로고    scopus 로고
    • Fox K., Henning R., Reed J., Simonian, R. A neural network approach towards intrusion detection. In: 13th National Computer Security Conference; 1990. pp. 125-134.
    • Fox K., Henning R., Reed J., Simonian, R. A neural network approach towards intrusion detection. In: 13th National Computer Security Conference; 1990. pp. 125-134.
  • 27
    • 84944737204 scopus 로고    scopus 로고
    • Kruegel C., Mutz D., Robertson W., Valeur F. Bayesian event classification for intrusion detection. In: Proceedings of the 19th Annual Computer Security Applications Conference; 2003.
    • Kruegel C., Mutz D., Robertson W., Valeur F. Bayesian event classification for intrusion detection. In: Proceedings of the 19th Annual Computer Security Applications Conference; 2003.
  • 29
    • 85084163349 scopus 로고    scopus 로고
    • Lee W., Stolfo S.J. Data mining approaches for intrusion detection. In: Proceedings of the 7th USENIX Security Symposium (SECURITY-98); 1998. pp. 79-94.
    • Lee W., Stolfo S.J. Data mining approaches for intrusion detection. In: Proceedings of the 7th USENIX Security Symposium (SECURITY-98); 1998. pp. 79-94.
  • 31
    • 0036321445 scopus 로고    scopus 로고
    • Use of K-nearest neighbor classifier for intrusion detection
    • Liao Y., and Vemuri V.R. Use of K-nearest neighbor classifier for intrusion detection. Computers & Security 21 (2002) 439-448
    • (2002) Computers & Security , vol.21 , pp. 439-448
    • Liao, Y.1    Vemuri, V.R.2
  • 32
    • 0034301517 scopus 로고    scopus 로고
    • Analysis and results of the 1999 DARPA off-line intrusion detection evaluation
    • Lippmann R., Haines J., Fried D., Korba J., and Das K. Analysis and results of the 1999 DARPA off-line intrusion detection evaluation. Computer Networks 34 4 (2000) 579-595
    • (2000) Computer Networks , vol.34 , Issue.4 , pp. 579-595
    • Lippmann, R.1    Haines, J.2    Fried, D.3    Korba, J.4    Das, K.5
  • 33
    • 0242456801 scopus 로고    scopus 로고
    • Mahoney M.V., Chan P.K. Learning nonstationary models of normal network traffic for detecting novel attacks. In: Proceedings of the Eighth ACM SIGKDD; 2002. pp. 376-385.
    • Mahoney M.V., Chan P.K. Learning nonstationary models of normal network traffic for detecting novel attacks. In: Proceedings of the Eighth ACM SIGKDD; 2002. pp. 376-385.
  • 34
    • 57849148240 scopus 로고    scopus 로고
    • Mahoney M., Chan P.K. An analysis of the 1999 DARPA/Lincoln laboratory evaluation data for network anomaly detection. Florida tech. report CS-2003-02; 2003.
    • Mahoney M., Chan P.K. An analysis of the 1999 DARPA/Lincoln laboratory evaluation data for network anomaly detection. Florida tech. report CS-2003-02; 2003.
  • 35
    • 84944239811 scopus 로고    scopus 로고
    • The 1998 Lincoln laboratory IDS evaluation. A critique
    • RAID
    • McHugh J. The 1998 Lincoln laboratory IDS evaluation. A critique. RAID. LNCS vol. 1907 (2000) 145-161
    • (2000) LNCS , vol.1907 , pp. 145-161
    • McHugh, J.1
  • 37
    • 57849086575 scopus 로고    scopus 로고
    • PMG. Maximizing the value of network intrusion detection. A corporate white paper from the product management group ofintrusion.com; 2001.
    • PMG. Maximizing the value of network intrusion detection. A corporate white paper from the product management group ofintrusion.com; 2001.
  • 38
    • 57849086160 scopus 로고    scopus 로고
    • Portnoy L., Eskin E., Stolfo S.J. Intrusion detection with unlabeled data using clustering. In: Proceedings of The ACM Workshop on Data Mining Applied to Security; 2001.
    • Portnoy L., Eskin E., Stolfo S.J. Intrusion detection with unlabeled data using clustering. In: Proceedings of The ACM Workshop on Data Mining Applied to Security; 2001.
  • 41
    • 35248842651 scopus 로고    scopus 로고
    • Detecting anomalous network traffic with self-organizing maps
    • Recent advances in intrusion detection, RAID
    • Ramadas M., Ostermann S., and Tjaden B. Detecting anomalous network traffic with self-organizing maps. Recent advances in intrusion detection, RAID. Lecture notes in computer science (LNCS) vol. 2820 (2003) 36-54
    • (2003) Lecture notes in computer science (LNCS) , vol.2820 , pp. 36-54
    • Ramadas, M.1    Ostermann, S.2    Tjaden, B.3
  • 43
    • 0038011179 scopus 로고    scopus 로고
    • Sekar R., Gupta A., Frullo J., Shanbhag T., Tiwari A., Yang H., et al. Specification-based anomaly detection: a new approach for detecting network intrusions. In: Proceedings of the Ninth ACM Conference on Computer and Communications Security; 2002. pp. 265-274.
    • Sekar R., Gupta A., Frullo J., Shanbhag T., Tiwari A., Yang H., et al. Specification-based anomaly detection: a new approach for detecting network intrusions. In: Proceedings of the Ninth ACM Conference on Computer and Communications Security; 2002. pp. 265-274.
  • 44
    • 0242456797 scopus 로고    scopus 로고
    • Sequeira K., Zaki M. ADMIT: anomaly-based data mining for intrusions. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2002. pp. 386-395.
    • Sequeira K., Zaki M. ADMIT: anomaly-based data mining for intrusions. In: Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2002. pp. 386-395.
  • 45
    • 33746150390 scopus 로고    scopus 로고
    • Wired and wireless intrusion detection system: classifications, good characteristics and state-of-the-art
    • Sobh T.S. Wired and wireless intrusion detection system: classifications, good characteristics and state-of-the-art. Computer Standards & Interfaces 28 (2006) 670-694
    • (2006) Computer Standards & Interfaces , vol.28 , pp. 670-694
    • Sobh, T.S.1
  • 46
    • 57849155469 scopus 로고    scopus 로고
    • Staniford-Chen S., Tung B., Porrar P., Kahn C., Schnackenberg D., Feiertag R., et al. The common intrusion detection framework-data formats. 1998. Internet draft 'draft-staniford-cidf-data-formats-00.txt'.
    • Staniford-Chen S., Tung B., Porrar P., Kahn C., Schnackenberg D., Feiertag R., et al. The common intrusion detection framework-data formats. 1998. Internet draft 'draft-staniford-cidf-data-formats-00.txt'.
  • 47
  • 48
    • 33750949942 scopus 로고    scopus 로고
    • Wang W., Battiti R. Identifying intrusions in computer networks with principal component analysis. In: The First International Conference on Availability, Reliability and Security; 2006. pp. 270-279. Vienna, Austria.
    • Wang W., Battiti R. Identifying intrusions in computer networks with principal component analysis. In: The First International Conference on Availability, Reliability and Security; 2006. pp. 270-279. Vienna, Austria.
  • 49
    • 0036647172 scopus 로고    scopus 로고
    • Multivariate statistical analysis of audit trails for host-based intrusion detection
    • Ye N., Emran S.M., Chen Q., and Vilbert S. Multivariate statistical analysis of audit trails for host-based intrusion detection. IEEE Transactions on Computers 51 7 (2002)
    • (2002) IEEE Transactions on Computers , vol.51 , Issue.7
    • Ye, N.1    Emran, S.M.2    Chen, Q.3    Vilbert, S.4
  • 50
    • 0037209446 scopus 로고    scopus 로고
    • Host-based intrusion detection using dynamic and static behavioral models
    • Yeung D.Y., and Ding Y. Host-based intrusion detection using dynamic and static behavioral models. Pattern Recognition 36 1 (2003) 229-243
    • (2003) Pattern Recognition , vol.36 , Issue.1 , pp. 229-243
    • Yeung, D.Y.1    Ding, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.