메뉴 건너뛰기




Volumn 5, Issue 2, 2012, Pages 178-185

An information theoretic approach for feature selection

Author keywords

Feature selection; Mutual information; Redundancy; Relevance

Indexed keywords

COMPUTATION THEORY; FEATURE EXTRACTION; FUNCTION EVALUATION; INFORMATION THEORY; INTRUSION DETECTION; REDUNDANCY;

EID: 84856248608     PISSN: 19390114     EISSN: 19390122     Source Type: Journal    
DOI: 10.1002/sec.303     Document Type: Article
Times cited : (16)

References (26)
  • 2
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John GH. Wrappers for feature subset selection. Artificial Intelligence 1997; 1(2): 273-324.
    • (1997) Artificial Intelligence , vol.1 , Issue.2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 3
    • 84947616664 scopus 로고    scopus 로고
    • Combined optimization of feature selection and algorithm parameter interaction in machine learning of language. In 14th European Conference on Machine Learning (ECML-2003), 2003; 84-95.
    • Daelemans W. Combined optimization of feature selection and algorithm parameter interaction in machine learning of language. In 14th European Conference on Machine Learning (ECML-2003), 2003; 84-95.
    • Daelemans, W.1
  • 5
    • 79851501401 scopus 로고    scopus 로고
    • A study on feature selection techniques in educational data mining
    • Ramaswami M, Bhaskaran R. A study on feature selection techniques in educational data mining. Journal of Computing 2009; 1(1): 7-11.
    • (2009) Journal of Computing , vol.1 , Issue.1 , pp. 7-11
    • Ramaswami, M.1    Bhaskaran, R.2
  • 6
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L, Liu H. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research 2004; 5: 1205-1224.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 7
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 2005; 27(8): 1226-1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 8
    • 84947611473 scopus 로고    scopus 로고
    • A practical approach to feature selection. In Proceedings of 9th International Conference on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1992; 249-256.
    • Kira K, Rendell L. A practical approach to feature selection. In Proceedings of 9th International Conference on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1992; 249-256.
    • Kira, K.1    Rendell, L.2
  • 9
    • 84947614222 scopus 로고    scopus 로고
    • Correlation-based feature subset selection for machine learning. Ph.D. Dissertation, Department of Computer Science, University of Waikato, Hamilton, New Zealand, 1999.
    • Hall MA. Correlation-based feature subset selection for machine learning. Ph.D. Dissertation, Department of Computer Science, University of Waikato, Hamilton, New Zealand, 1999.
    • Hall, M.A.1
  • 11
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • Liu H, Sun J, Liu L, Zhang H. Feature selection with dynamic mutual information. Pattern Recognition 2009; 42: 1330-1339.
    • (2009) Pattern Recognition , vol.42 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 12
    • 84904310358 scopus 로고    scopus 로고
    • An optimal feature selection technique using the concept of mutual information. In ISSPA, 2001; 477-480.
    • Ai-ani A, Deriche M. An optimal feature selection technique using the concept of mutual information. In ISSPA, 2001; 477-480.
    • Ai-ani, A.1    Deriche, M.2
  • 14
    • 84947618321 scopus 로고    scopus 로고
    • Feature Selection Based on Joint Mutual Information. Advances in Intelligent Data Analysis and Computational Intelligent Methods and Application, 1999.
    • Yang HH, Moody J. Feature Selection Based on Joint Mutual Information. Advances in Intelligent Data Analysis and Computational Intelligent Methods and Application, 1999.
    • Yang, H.H.1    Moody, J.2
  • 15
    • 84898987386 scopus 로고    scopus 로고
    • Data Visualization and Feature Selection: New Algorithms for NonGaussian Data. Advances in NIPS, 2000; 687-693.
    • Yang HH, Moody J. Data Visualization and Feature Selection: New Algorithms for NonGaussian Data. Advances in NIPS, 2000; 687-693.
    • Yang, H.H.1    Moody, J.2
  • 16
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural networks learning
    • Battiti R. Using mutual information for selecting features in supervised neural networks learning. IEEE Transactions on Neural Networks 1994; 5(4): 537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 17
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N, Choi CH. Input feature selection for classification problems. IEEE Transactions on Neural Networks 2002; 13(1): 143-159.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 18
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M, Liu H. Consistency-based search in feature selection. Artificial Intelligence 2003; 151: 155-176.
    • (2003) Artificial Intelligence , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 19
    • 0345414114 scopus 로고    scopus 로고
    • Object recognition with informative features and linear classification. In IEEE Conference on Computer Vision and Pattern Recognition, 2003.
    • Vidal-Naquet M, Ullman S. Object recognition with informative features and linear classification. In IEEE Conference on Computer Vision and Pattern Recognition, 2003.
    • Vidal-Naquet, M.1    Ullman, S.2
  • 20
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret F. Fast binary feature selection with conditional mutual information. The Journal of Machine Learning Research 2004; 5: 1531-1555.
    • (2004) The Journal of Machine Learning Research , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 21
    • 84947617409 scopus 로고    scopus 로고
    • Conditional infomax learning: an integrated framework for feature extraction and fusion. In Proceedings of European Conference on Computer Vision, 2006.
    • Lin D, Tang X. Conditional infomax learning: an integrated framework for feature extraction and fusion. In Proceedings of European Conference on Computer Vision, 2006.
    • Lin, D.1    Tang, X.2
  • 22
    • 84856300644 scopus 로고    scopus 로고
    • KDD99, KDD cup 1999 data, 23 July 2010].
    • KDD99, KDD cup 1999 data, 1999, [23 July 2010].
    • (1999)
  • 24
  • 26
    • 78650169163 scopus 로고    scopus 로고
    • The Use of Artificial Intelligence based Techniques for Intrusion Detection - A Review
    • DOI: 10.1007/s10462-010-9179-5, Springer Netherlands, ISSN: 0269-2821 (print version), 1573-7462 (electronic version).
    • Kumar G, Kumar K, Sachdeva M. The Use of Artificial Intelligence based Techniques for Intrusion Detection - A Review. Artificial Intelligence Review 2010; 34(4): 369-387. DOI: 10.1007/s10462-010-9179-5, Springer Netherlands, ISSN: 0269-2821 (print version), 1573-7462 (electronic version).
    • (2010) Artificial Intelligence Review , vol.34 , Issue.4 , pp. 369-387
    • Kumar, G.1    Kumar, K.2    Sachdeva, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.