메뉴 건너뛰기




Volumn 12, Issue 9, 2012, Pages 2707-2718

Neural identification of dynamic systems on FPGA with improved PSO learning

Author keywords

Artificial neural networks (ANN); FPGA; Particle swarm optimization (PSO); System identification

Indexed keywords

HARDWARE IMPLEMENTATIONS; HARDWARE UTILIZATION; IMPROVED PARTICLE SWARM OPTIMIZATION; IMPROVED PSO; LEARNING ABILITIES; LEARNING PHASE; LOCAL MINIMUMS; NEURAL IDENTIFICATION;

EID: 84863441795     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2012.03.022     Document Type: Article
Times cited : (70)

References (30)
  • 1
    • 35748941248 scopus 로고    scopus 로고
    • A high bit resolution FPGA implementation of a FNN with a new algorithm for the activation function
    • DOI 10.1016/j.neucom.2006.11.028, PII S0925231207002159, Dedicated Hardware Architectures for Intelligent Systems
    • P. Ferreira, P. Ribeiro, A. Antunes, and F.M. Dias A high bit resolution FPGA implementation of a FNN with a new algorithm for the activation function Neurocomputing 71 1-3 2006 71 77 (Pubitemid 350047388)
    • (2007) Neurocomputing , vol.71 , Issue.1-3 , pp. 71-77
    • Ferreira, P.1    Ribeiro, P.2    Antunes, A.3    Dias, F.M.4
  • 3
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • DOI 10.1109/4235.985692, PII S1089778X02022099
    • M. Clerc, and J. Kennedy The particle swarm-explosion, stability and convergence in a multidimensional complex space IEEE Transactions on Evolutionary Computation 6 1 2002 58 73 (Pubitemid 34404564)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.1 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 4
    • 35248838920 scopus 로고    scopus 로고
    • Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization
    • DOI 10.1016/j.chaos.2006.05.077, PII S0960077906005443
    • F.A. Guerra, L. dos, and S. Coelho Multi-step ahead nonlinear identification of Lorenz's chaotic system using radial basis neural network with learning by clustering and particle swarm optimization Chaos, Solitons & Fractals 35 2008 967 979 (Pubitemid 47562758)
    • (2008) Chaos, Solitons and Fractals , vol.35 , Issue.5 , pp. 967-979
    • Guerra, F.A.1    Dos, L.2    Coelho, S.3
  • 5
    • 33746709926 scopus 로고    scopus 로고
    • PSO-based neural network optimization and its utilization in a boring machine
    • DOI 10.1016/j.jmatprotec.2005.07.002, PII S0924013605007090
    • J. Zhou, Z. Duan, Y. Li, J. Deng, and D. Yu PSO-based neural network optimization and its utilization in a boring machine Journal of Materials Processing Technology 178 1-3 2006 19 23 (Pubitemid 44163108)
    • (2006) Journal of Materials Processing Technology , vol.178 , Issue.1-3 , pp. 19-23
    • Zhou, J.1    Duan, Z.2    Li, Y.3    Deng, J.4    Yu, D.5
  • 6
    • 33644622316 scopus 로고    scopus 로고
    • Application of a novel fuzzy classifier to fault detection and isolation of the DAMADICS benchmark problem
    • C.D. Bocaniala, and J.S. da Costa Application of a novel fuzzy classifier to fault detection and isolation of the DAMADICS benchmark problem Control Engineering Practice 14 6 2006 653 669
    • (2006) Control Engineering Practice , vol.14 , Issue.6 , pp. 653-669
    • Bocaniala, C.D.1    Da Costa, J.S.2
  • 7
    • 5144235131 scopus 로고    scopus 로고
    • Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation control
    • S.P. Ghoshal Optimizations of PID gains by particle swarm optimizations in fuzzy based automatic generation control Electric Power Systems Research 72 3 2004 203 212
    • (2004) Electric Power Systems Research , vol.72 , Issue.3 , pp. 203-212
    • Ghoshal, S.P.1
  • 8
    • 38649139864 scopus 로고    scopus 로고
    • A retinomorphic architecture based on discrete-time cellular neural networks using reconfigurable computing
    • J. Martinez, F.J. Toledo, E. Fernandez, and J.M. Ferrandez A retinomorphic architecture based on discrete-time cellular neural networks using reconfigurable computing Neurocomputing 71 4-6 2008 766 775
    • (2008) Neurocomputing , vol.71 , Issue.46 , pp. 766-775
    • Martinez, J.1    Toledo, F.J.2    Fernandez, E.3    Ferrandez, J.M.4
  • 12
    • 0033322982 scopus 로고    scopus 로고
    • Towards an FPGA based reconfigurable computing environment for neural network implementations
    • J. Zhu, G.J. Milne, and B.K. Gunther Towards an FPGA based reconfigurable computing environment for neural network implementations Proceedings of the Ninth International Conference on Artificial Neural Networks (ICANN'99) IEE Conference Proceedings 470 Edinburgh, UK 1999 661 666 (Pubitemid 30519844)
    • (1999) IEE Conference Publication , vol.2 , Issue.470 , pp. 661-666
    • Zhu, J.1    Milne, G.J.2    Gunther, B.K.3
  • 13
    • 54249090769 scopus 로고    scopus 로고
    • On the arithmetic precision for implementing back-propagation networks on FPGA: A case study
    • R. Amos, Omondi C. Jagath, Rajapakse Springer USA
    • M. Mousa, S. Areibi, and K. Nichols On the arithmetic precision for implementing back-propagation networks on FPGA: a case study R. Amos, Omondi C. Jagath, Rajapakse FPGA Implementations of Neural Networks, 2006 Springer USA 37 61
    • (2006) FPGA Implementations of Neural Networks , pp. 37-61
    • Mousa, M.1    Areibi, S.2    Nichols, K.3
  • 14
    • 67349275704 scopus 로고    scopus 로고
    • Dynamic MAC-based architecture of artificial neural networks suitable for hardware implementation on FPGAs
    • N. Nedjah, R.M.D. Silva, L.M.M. Mourelle, and M.V.C.D. Silva Dynamic MAC-based architecture of artificial neural networks suitable for hardware implementation on FPGAs Neurocomputing 72 10-12 2009 2171 2179
    • (2009) Neurocomputing , vol.72 , Issue.1012 , pp. 2171-2179
    • Nedjah, N.1    Silva, R.M.D.2    Mourelle, L.M.M.3    Silva, M.V.C.D.4
  • 18
    • 33846101011 scopus 로고    scopus 로고
    • The impact of arithmetic representation on implementing MLP-BP on FPGAs: A study
    • DOI 10.1109/TNN.2006.883002
    • A.W. Savich, M. Moussa, and S. Areibi The impact of arithmetic representation on implementing MLP-BP on FPGAs: a study IEEE Transactions on Neural Networks 18 1 2007 240 252 (Pubitemid 46062930)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.1 , pp. 240-252
    • Savich, A.W.1    Moussa, M.2    Areibi, S.3
  • 19
    • 79951768625 scopus 로고    scopus 로고
    • Neural network training based on FPGA with floating point number format and its performance
    • M.A. Çavuşlu, C. Karakuzu, S. Şahin, and M. Yakut Neural network training based on FPGA with floating point number format and its performance Neural Computing & Application 20 2 2011 195 202
    • (2011) Neural Computing & Application , vol.20 , Issue.2 , pp. 195-202
    • Çavuşlu, M.A.1    Karakuzu, C.2    Şahin, S.3    Yakut, M.4
  • 21
    • 0002206923 scopus 로고
    • Algorithms for randomness in the behavioral sciences: A tutorial, Behavior Research Methods
    • M. Brysbaert Algorithms for randomness in the behavioral sciences: a tutorial, Behavior Research Methods Instruments & Computers 23 1991 45 60
    • (1991) Instruments & Computers , vol.23 , pp. 45-60
    • Brysbaert, M.1
  • 23
    • 79951774196 scopus 로고    scopus 로고
    • (accessed 28.05.10)
    • D.R. Tveter, Backpropagator's review, 1998, from http://www.dontveter. com/bpr/activate.html (accessed 28.05.10).
    • (1998) Backpropagator's Review
    • Tveter, D.R.1
  • 25
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • DOI 10.1109/72.80202
    • K.S. Narendra, and K. Parthasarathy Identification and control of dynamical systems using neural networks IEEE Transactions on Neural Networks 1 1 1990 4 27 (Pubitemid 20689507)
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra Kumpati, S.1    Parthasarathy Kannan2
  • 26
    • 0032584927 scopus 로고    scopus 로고
    • Training wavelet networks for nonlinear dynamic input-output modeling
    • DOI 10.1016/S0925-2312(98)00010-1, PII S0925231298000101
    • Y. Oussar, I. Rivals, L. Personnaz, and G. Dreyfus Training wawelet networks for nonlinear dynamic input-output modeling Neurocomputing 20 1998 173 188 (Pubitemid 28423535)
    • (1998) Neurocomputing , vol.20 , Issue.1-3 , pp. 173-188
    • Oussar, Y.1    Rivals, I.2    Personnaz, L.3    Dreyfus, G.4
  • 29
    • 75149134664 scopus 로고    scopus 로고
    • A survey: Algorithms simulating bee swarm intelligence
    • D. Karaboga, and B. Akay A survey: algorithms simulating bee swarm intelligence Artificial Intelligence Review 31 1 2009 68 85
    • (2009) Artificial Intelligence Review , vol.31 , Issue.1 , pp. 68-85
    • Karaboga, D.1    Akay, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.