메뉴 건너뛰기




Volumn , Issue , 2005, Pages 69-77

Does cost-sensitive learning beat sampling for classifying rare classes?

Author keywords

class imbalance; cost sensitive learning; data mining; decision trees; induction; rare classes; sampling

Indexed keywords

CLASS DISTRIBUTIONS; CLASS IMBALANCE; COST-SENSITIVE LEARNING; DOWNSAMPLING; MEDICAL DIAGNOSIS; MISCLASSIFICATION COSTS; NONUNIFORM; RARE CLASS; SAMPLING TECHNIQUE; TRAINING SETS;

EID: 77953586736     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1089827.1089836     Document Type: Conference Paper
Times cited : (144)

References (18)
  • 3
    • 0000159863 scopus 로고    scopus 로고
    • Toward scalable learning with non-uniform cost and class distributions: A case study in credit card fraud detection
    • Chan, P., and Stolfo, S. Toward scalable learning with non-uniform cost and class distributions: a case study in credit card fraud detection. American Association for Artificial Intelligence, 1998.
    • (1998) American Association for Artificial Intelligence
    • Chan, P.1    Stolfo, S.2
  • 4
    • 68549121111 scopus 로고    scopus 로고
    • C4.5 and imbalanced datasets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure
    • Chawla, N. C4.5 and imbalanced datasets: investigating the effect of sampling method, probabilistic estimate, and decision tree structure. ICML 2003 Workshop on Imbalanced Datasets.
    • ICML 2003 Workshop on Imbalanced Datasets
    • Chawla, N.1
  • 6
    • 33745787554 scopus 로고    scopus 로고
    • Technical Report 666, Statistics Department, University of California at Berkeley
    • Chen C., Liaw, A., and Breiman, L. Using random forest to learn unbalanced data. Technical Report 666, Statistics Department, University of California at Berkeley, 2004. 〈http://www.stat.berkeley.edu/users/chenchao/ 666.pdf〉
    • (2004) Using Random Forest to Learn Unbalanced Data
    • Chen, C.1    Liaw A2    Breiman, L.3
  • 12
    • 33845772427 scopus 로고    scopus 로고
    • Learning when data sets are imbalanced and when costs are unequal and unknown
    • Maloof, M. Learning when data sets are imbalanced and when costs are unequal and unknown. ICML 2003 Workshop on Imbalanced Datasets.
    • ICML 2003 Workshop on Imbalanced Datasets
    • Maloof, M.1
  • 13
    • 77953566059 scopus 로고    scopus 로고
    • The importance of estimation errors in cost-sensitive learning
    • May 30
    • Pednault, E., Rosen, B., and Apte, C. The importance of estimation errors in cost-sensitive learning. IBM Research Report RC-21757, May 30, 2000.
    • (2000) IBM Research Report RC-21757
    • Pednault, E.1    Rosen, B.2    Apte, C.3
  • 15
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R. Induction of decision trees. Machine Learning 1: 81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 17
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Weiss, G., and Provost, F. Learning when training data are costly: the effect of class distribution on tree induction. Journal of Artificial Intelligence Research, 2003.
    • (2003) Journal of Artificial Intelligence Research
    • Weiss, G.1    Provost, F.2
  • 18
    • 77953549317 scopus 로고    scopus 로고
    • Data Mining Tools See5 and C5.0
    • Nov May 13
    • "Data Mining Tools See5 and C5.0." RuleQuest, Nov. 2004. RuleQuest Research. May 13, 2005. 〈http://www.rulequest.com/see5-info. html〉
    • (2004) RuleQuest


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.