메뉴 건너뛰기




Volumn 13, Issue 1, 2013, Pages

Improving sensitivity of machine learning methods for automated case identification from free-text electronic medical records

Author keywords

Class imbalance; Cost sensitive learning; Electronic health records; Improving sensitivity; Random sampling

Indexed keywords

ACUTE KIDNEY FAILURE; ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; BILIARY TRACT DISEASE; COMPARATIVE STUDY; ELECTRONIC MEDICAL RECORD; HUMAN; INFORMATION PROCESSING; LIVER DISEASE; METHODOLOGY;

EID: 84874398938     PISSN: None     EISSN: 14726947     Source Type: Journal    
DOI: 10.1186/1472-6947-13-30     Document Type: Article
Times cited : (42)

References (59)
  • 4
    • 84871869069 scopus 로고    scopus 로고
    • Identifying clinical/translational research cohorts: Ascertainment via querying an integrated multi-source database
    • 10.1136/amiajnl-2012-001050 23059733
    • Identifying clinical/translational research cohorts: ascertainment via querying an integrated multi-source database. Hurdle JF, Haroldsen SC, Hammer A, Spigle C, Fraser AM, Mineau GP, Courdy SJ, J Am Med Inform Assoc 2013 20 164 171 10.1136/amiajnl-2012-001050 23059733
    • (2013) J Am Med Inform Assoc , vol.20 , pp. 164-171
    • Hurdle, J.F.1    Haroldsen, S.C.2    Hammer, A.3    Spigle, C.4    Fraser, A.M.5    Mineau, G.P.6    Courdy, S.J.7
  • 7
    • 78650497348 scopus 로고    scopus 로고
    • A systematic literature review of automated clinical coding and classification systems
    • 10.1136/jamia.2009.001024 20962126
    • A systematic literature review of automated clinical coding and classification systems. Stanfill MH, Williams M, Fenton SH, Jenders RA, Hersh WR, J Am Med Inform Assoc 2010 17 646 651 10.1136/jamia.2009.001024 20962126
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 646-651
    • Stanfill, M.H.1    Williams, M.2    Fenton, S.H.3    Jenders, R.A.4    Hersh, W.R.5
  • 9
    • 79959538203 scopus 로고    scopus 로고
    • An automated database case definition for serious bleeding related to oral anticoagulant use
    • 10.1002/pds.2109 21387461
    • An automated database case definition for serious bleeding related to oral anticoagulant use. Cunningham A, Stein CM, Chung CP, Daugherty JR, Smalley WE, Ray WA, Pharmacoepidemiol Drug Saf 2011 20 560 566 10.1002/pds.2109 21387461
    • (2011) Pharmacoepidemiol Drug Saf , vol.20 , pp. 560-566
    • Cunningham, A.1    Stein, C.M.2    Chung, C.P.3    Daugherty, J.R.4    Smalley, W.E.5    Ray, W.A.6
  • 10
    • 10644286516 scopus 로고    scopus 로고
    • Accuracy of veterans administration databases for a diagnosis of rheumatoid arthritis
    • DOI 10.1002/art.20827
    • Accuracy of Veterans Administration databases for a diagnosis of rheumatoid arthritis. Singh JA, Holmgren AR, Noorbaloochi S, Arthritis Rheum 2004 51 952 957 10.1002/art.20827 15593102 (Pubitemid 39648188)
    • (2004) Arthritis Care and Research , vol.51 , Issue.6 , pp. 952-957
    • Singh, J.A.1    Holmgren, A.R.2    Noorbaloochi, S.3
  • 11
    • 79952007101 scopus 로고    scopus 로고
    • What does validation of cases in electronic record databases mean? the potential contribution of free text
    • 10.1002/pds.2086 21351316
    • What does validation of cases in electronic record databases mean? The potential contribution of free text. Nicholson A, Tate AR, Koeling R, Cassell JA, Pharmacoepidemiol Drug Saf 2011 20 321 324 10.1002/pds.2086 21351316
    • (2011) Pharmacoepidemiol Drug Saf , vol.20 , pp. 321-324
    • Nicholson, A.1    Tate, A.R.2    Koeling, R.3    Cassell, J.A.4
  • 12
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: A review of recent research
    • Extracting information from textual documents in the electronic health record: a review of recent research. Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF, Yearb Med Inform 2008 47 128 144
    • (2008) Yearb Med Inform , vol.47 , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3    Hurdle, J.F.4
  • 15
    • 84964959775 scopus 로고    scopus 로고
    • Discovering peripheral arterial disease cases from radiology notes using natural language processing division of biomedical statistics and informatics, 2 division of cardiovascular diseases
    • 21347073
    • Discovering peripheral arterial disease cases from radiology notes using natural language processing division of biomedical statistics and informatics, 2 division of cardiovascular diseases. Savova GK, Fan J, Ye Z, Murphy SP, Zheng J, Chute CG, Kullo IJ, AMIA Annu Symp Proc 2010 2010 722 726 21347073
    • (2010) AMIA Annu Symp Proc , vol.2010 , pp. 722-726
    • Savova, G.K.1    Fan, J.2    Ye, Z.3    Murphy, S.P.4    Zheng, J.5    Chute, C.G.6    Kullo, I.J.7
  • 17
    • 84964959539 scopus 로고    scopus 로고
    • Comparing methods for identifying pancreatic cancer patients using electronic data sources
    • http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041435/21346976
    • Comparing methods for identifying pancreatic cancer patients using electronic data sources. Friedlin J, Overhage M, Al-Haddad Ma, Waters Ja, Aguilar-Saavedra JJR, Kesterson J, Schmidt M, AMIA Annu Symp Proc 2010 2010 237 241 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041435/ 21346976
    • (2010) AMIA Annu Symp Proc , vol.2010 , pp. 237-241
    • Friedlin, J.1    Overhage, M.2    Al-Haddad, M.3    Waters, J.4    Aguilar-Saavedra, J.J.R.5    Kesterson, J.6    Schmidt, M.7
  • 19
    • 44649122876 scopus 로고    scopus 로고
    • Automatic construction of rule-based ICD-9-CM coding systems
    • DOI 10.1186/1471-2105-9-S3-S10
    • Automatic construction of rule-based ICD-9-CM coding systems. Farkas R, Szarvas G, BMC Bioinforma 2008 9 3 10 10.1186/1471-2105-9-S3-S10 (Pubitemid 351959570)
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 3
    • Farkas, R.1    Szarvas, G.2
  • 20
    • 64249141071 scopus 로고    scopus 로고
    • Electronic health record-based cardiac risk assessment and identification of unmet preventive needs
    • 10.1097/MLR.0b013e31818dce21 19238100
    • Electronic health record-based cardiac risk assessment and identification of unmet preventive needs. Persell SD, Dunne AP, Lloyd-Jones DM, Baker DW, Med Care 2009 47 418 424 10.1097/MLR.0b013e31818dce21 19238100
    • (2009) Med Care , vol.47 , pp. 418-424
    • Persell, S.D.1    Dunne, A.P.2    Lloyd-Jones, D.M.3    Baker, D.W.4
  • 21
    • 84856021032 scopus 로고    scopus 로고
    • Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning
    • 10.1371/journal.pone.0030412 22276193
    • Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning. Wang Z, Shah AD, Tate AR, Denaxas S, Shawe-Taylor J, Hemingway H, PLoS One 2012 7 30412 10.1371/journal.pone.0030412 22276193
    • (2012) PLoS One , vol.7 , pp. 530412
    • Wang, Z.1    Shah, A.D.2    Tate, A.R.3    Denaxas, S.4    Shawe-Taylor, J.5    Hemingway, H.6
  • 25
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Learning from imbalanced data. Garcia EA, IEEE Trans Knowl Data Eng 2009 21 1263 1284
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , pp. 1263-1284
    • Garcia, E.A.1
  • 26
    • 33947284406 scopus 로고    scopus 로고
    • Boosted classification trees and class probability/quantile estimation
    • Boosted classification trees and class probability / quantile estimation. Mease D, Wyner AJ, J Mach Learn Res 2007 8 409 439 (Pubitemid 46434120)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 409-439
    • Mease, D.1    Wyner, A.J.2    Buja, A.3
  • 27
  • 29
    • 37949004300 scopus 로고    scopus 로고
    • Data Mining for Imbalanced Datasets: An Overview
    • Boston, MA: Springer US Maimon O, Rokach L
    • Data Mining for Imbalanced Datasets: An Overview. Chawla NV, Data Mining and Knowledge Discovery Handbook Boston, MA: Springer US, Maimon O, Rokach L, 2010 875 886
    • (2010) Data Mining and Knowledge Discovery Handbook , pp. 875-886
    • Chawla, N.V.1
  • 35
    • 84857794867 scopus 로고    scopus 로고
    • Cost-sensitive classification with inadequate labeled data
    • 10.1016/j.is.2011.10.009
    • Cost-sensitive classification with inadequate labeled data. Wang T, Qin Z, Zhang S, Zhang C, Inf Syst 2012 37 508 516 10.1016/j.is.2011.10.009
    • (2012) Inf Syst , vol.37 , pp. 508-516
    • Wang, T.1    Qin, Z.2    Zhang, S.3    Zhang, C.4
  • 36
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • The class imbalance problem: a systematic study. Japkowicz N, Stephen S, Intell Data Anal 2002 6 429 449
    • (2002) Intell Data Anal , vol.6 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 37
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • DOI 10.1016/j.patcog.2007.04.009, PII S0031320307001835
    • Cost-sensitive boosting for classification of imbalanced data. Sun Y, Kamel M, Wong A, Wang Y, Pattern Recognit 2007 40 3358 3378 10.1016/j.patcog. 2007.04.009 (Pubitemid 47223287)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 38
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • DOI 10.1109/TKDE.2006.17
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem. Zhou Z, Member S, Liu X, IEEE Trans Knowl Data Eng 2006 18 63 77 (Pubitemid 43145089)
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2
  • 41
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • 10.1177/001316446002000104
    • A coefficient of agreement for nominal scales. Cohen J, Educ Psychol Meas 1960 20 37 46 10.1177/001316446002000104
    • (1960) Educ Psychol Meas , vol.20 , pp. 37-46
    • Cohen, J.1
  • 42
    • 0035741485 scopus 로고    scopus 로고
    • A simple algorithm for identifying negated findings and diseases in discharge summaries
    • DOI 10.1006/jbin.2001.1029
    • A simple algorithm for identifying negated findings and diseases in discharge summaries. Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG, J Biomed Inform 2001 34 301 310 10.1006/jbin.2001.1029 12123149 (Pubitemid 34694864)
    • (2001) Journal of Biomedical Informatics , vol.34 , Issue.5 , pp. 301-310
    • Chapman, W.W.1    Bridewell, W.2    Hanbury, P.3    Cooper, G.F.4    Buchanan, B.G.5
  • 45
    • 67049152595 scopus 로고    scopus 로고
    • Boosting for Learning Multiple Classes with Imbalanced Class Distribution
    • Washington, DC, USA: IEEE Computer Society 10.1109/ICDM.2006.29
    • Boosting for Learning Multiple Classes with Imbalanced Class Distribution. Sun Y, Kamel M, Wang Y, Sixth International Conference on Data Mining (ICDM'06) Washington, DC, USA: IEEE Computer Society 2006 592 602 10.1109/ICDM.2006.29
    • (2006) Sixth International Conference on Data Mining (ICDM'06) , pp. 592-602
    • Sun, Y.1    Kamel, M.2    Wang, Y.3
  • 48
    • 0002106691 scopus 로고    scopus 로고
    • Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '99
    • New York, New York, USA: ACM Press
    • Domingos P, MetaCost: A General Method for Making Classifiers Cost-Sensitive New York, New York, USA: ACM Press Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining-KDD '99. 1999 155 164
    • (1999) MetaCost: A General Method for Making Classifiers Cost-Sensitive , pp. 155-164
    • Domingos, P.1
  • 50
    • 8344282137 scopus 로고
    • C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993
    • C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993. Salzberg SL, Mach Learn 1994 16 235 240
    • (1994) Mach Learn , vol.16 , pp. 235-240
    • Salzberg, S.L.1
  • 52
    • 78049383639 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • A practical guide to support vector classification. Hsu C, Chang C, Lin C, Bioinformatics 2010 1 1 16
    • (2010) Bioinformatics , vol.1 , pp. 1-16
    • Hsu, C.1    Chang, C.2    Lin, C.3
  • 54
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Induction of decision trees. Quinlan JR, Mach Learn 1986 1 81 106
    • (1986) Mach Learn , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 55
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Learning when training data are costly: the effect of class distribution on tree induction. Weiss GM, Provost F, J Artif Intell Res 2003 19 315 354 (Pubitemid 41525924)
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 58
    • 70349470770 scopus 로고    scopus 로고
    • ConText: An algorithm for determining negation, experiencer, and temporal status from clinical reports
    • 10.1016/j.jbi.2009.05.002 19435614
    • ConText: an algorithm for determining negation, experiencer, and temporal status from clinical reports. Harkema H, Dowling JN, Thornblade T, Chapman WW, J Biomed Inform 2009 42 839 851 10.1016/j.jbi.2009.05.002 19435614
    • (2009) J Biomed Inform , vol.42 , pp. 839-851
    • Harkema, H.1    Dowling, J.N.2    Thornblade, T.3    Chapman, W.W.4
  • 59
    • 84859078288 scopus 로고    scopus 로고
    • Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short papers - Volume 2
    • Portland, Oregon, USA: Association for Computational Linguistics
    • Apostolova E, Tomuro N, Demner-fushman D, Automatic Extraction of Lexico-Syntactic Patterns for Detection of Negation and Speculation Scopes Portland, Oregon, USA: Association for Computational Linguistics Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2. 2011 283 287
    • (2011) Automatic Extraction of Lexico-Syntactic Patterns for Detection of Negation and Speculation Scopes , pp. 283-287
    • Apostolova, E.1    Tomuro, N.2    Demner-Fushman, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.