-
2
-
-
34547760022
-
Patterning the female side of Arabidopsis: the importance of hormones
-
Balanza V., et al. Patterning the female side of Arabidopsis: the importance of hormones. J. Exp. Bot. 2006, 57:3457-3469.
-
(2006)
J. Exp. Bot.
, vol.57
, pp. 3457-3469
-
-
Balanza, V.1
-
4
-
-
77958137199
-
Carpel development
-
Academic Press
-
Ferrándiz C., et al. Carpel development. Advances in Botanical Research 2010, Vol. 55:1-73. Academic Press.
-
(2010)
Advances in Botanical Research
, vol.55
, pp. 1-73
-
-
Ferrándiz, C.1
-
5
-
-
0032611228
-
Molecular genetics of gynoecium development in Arabidopsis
-
Bowman J.L., et al. Molecular genetics of gynoecium development in Arabidopsis. Curr. Top. Dev. Biol. 1999, 45:155-205.
-
(1999)
Curr. Top. Dev. Biol.
, vol.45
, pp. 155-205
-
-
Bowman, J.L.1
-
6
-
-
48949120198
-
SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development
-
Azhakanandam S., et al. SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development. Plant Physiol. 2008, 146:1165-1181.
-
(2008)
Plant Physiol.
, vol.146
, pp. 1165-1181
-
-
Azhakanandam, S.1
-
7
-
-
77956879407
-
Polar auxin transport together with aintegumenta and revoluta coordinate early Arabidopsis gynoecium development
-
Nole-Wilson S., et al. Polar auxin transport together with aintegumenta and revoluta coordinate early Arabidopsis gynoecium development. Dev. Biol. 2010, 346:181-195.
-
(2010)
Dev. Biol.
, vol.346
, pp. 181-195
-
-
Nole-Wilson, S.1
-
8
-
-
80054838468
-
Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana
-
Wynn A.N., et al. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana. PLoS ONE 2011, 6:e26231.
-
(2011)
PLoS ONE
, vol.6
-
-
Wynn, A.N.1
-
9
-
-
77952343211
-
Meristematic sculpting in fruit development
-
Girin T., et al. Meristematic sculpting in fruit development. J. Exp. Bot. 2009, 60:1493-1502.
-
(2009)
J. Exp. Bot.
, vol.60
, pp. 1493-1502
-
-
Girin, T.1
-
12
-
-
66149162003
-
A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis
-
Larue C.T., et al. A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis. Plant J. 2009, 58:450-463.
-
(2009)
Plant J.
, vol.58
, pp. 450-463
-
-
Larue, C.T.1
-
13
-
-
34247369438
-
Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness
-
Sieber P., et al. Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 2007, 134:1051-1060.
-
(2007)
Development
, vol.134
, pp. 1051-1060
-
-
Sieber, P.1
-
14
-
-
0032472373
-
AGO1 defines a novel locus of Arabidopsis controlling leaf development
-
Bohmert K., et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 1998, 17:170-180.
-
(1998)
EMBO J.
, vol.17
, pp. 170-180
-
-
Bohmert, K.1
-
15
-
-
79953744170
-
ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis
-
Ji L., et al. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet. 2011, 7:e1001358.
-
(2011)
PLoS Genet.
, vol.7
-
-
Ji, L.1
-
16
-
-
0035945635
-
Complexes of MADS-box proteins are sufficient to convert leaves into floral organs
-
Honma T., Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 2001, 409:525-529.
-
(2001)
Nature
, vol.409
, pp. 525-529
-
-
Honma, T.1
Goto, K.2
-
17
-
-
0025371984
-
The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors
-
Yanofsky M.F., et al. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 1990, 346:35-39.
-
(1990)
Nature
, vol.346
, pp. 35-39
-
-
Yanofsky, M.F.1
-
18
-
-
0024301235
-
Genes directing flower development in Arabidopsis
-
Bowman J.L., et al. Genes directing flower development in Arabidopsis. Plant Cell 1989, 1:37-52.
-
(1989)
Plant Cell
, vol.1
, pp. 37-52
-
-
Bowman, J.L.1
-
19
-
-
0025891885
-
Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product
-
Drews G.N., et al. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 1991, 65:991-1002.
-
(1991)
Cell
, vol.65
, pp. 991-1002
-
-
Drews, G.N.1
-
20
-
-
0035875070
-
Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS
-
Lenhard M., et al. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 2001, 105:805.
-
(2001)
Cell
, vol.105
, pp. 805
-
-
Lenhard, M.1
-
21
-
-
0035875045
-
A molecular link between stem cell regulation and floral patterning in Arabidopsis
-
Lohmann J.U., et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 2001, 105:793-803.
-
(2001)
Cell
, vol.105
, pp. 793-803
-
-
Lohmann, J.U.1
-
22
-
-
82755174071
-
AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins
-
Liu X., et al. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 2011, 23:3654-3670.
-
(2011)
Plant Cell
, vol.23
, pp. 3654-3670
-
-
Liu, X.1
-
23
-
-
68149157964
-
A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem
-
Sun B., et al. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev. 2009, 23:1791-1804.
-
(2009)
Genes Dev.
, vol.23
, pp. 1791-1804
-
-
Sun, B.1
-
24
-
-
77953235345
-
Floral stem cells: from dynamic balance towards termination
-
Sun B., Ito T. Floral stem cells: from dynamic balance towards termination. Biochem. Soc. Trans. 2010, 38:613-616.
-
(2010)
Biochem. Soc. Trans.
, vol.38
, pp. 613-616
-
-
Sun, B.1
Ito, T.2
-
25
-
-
34247224266
-
Flowering and determinacy in Arabidopsis
-
Sablowski R. Flowering and determinacy in Arabidopsis. J. Exp. Bot. 2007, 58:899-907.
-
(2007)
J. Exp. Bot.
, vol.58
, pp. 899-907
-
-
Sablowski, R.1
-
26
-
-
68249162470
-
Time to stop: flower meristem termination
-
Prunet N., et al. Time to stop: flower meristem termination. Plant Physiol. 2009, 150:1764-1772.
-
(2009)
Plant Physiol.
, vol.150
, pp. 1764-1772
-
-
Prunet, N.1
-
27
-
-
79952304237
-
Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana
-
Bartrina I., et al. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 2011, 23:69-80.
-
(2011)
Plant Cell
, vol.23
, pp. 69-80
-
-
Bartrina, I.1
-
28
-
-
0034677650
-
The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes
-
Schoof H., et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 2000, 100:635-644.
-
(2000)
Cell
, vol.100
, pp. 635-644
-
-
Schoof, H.1
-
29
-
-
48549092490
-
REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana
-
Prunet N., et al. REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana. Plant Cell 2008, 20:901-919.
-
(2008)
Plant Cell
, vol.20
, pp. 901-919
-
-
Prunet, N.1
-
30
-
-
68249145361
-
Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA
-
Das P., et al. Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development 2009, 136:1605-1611.
-
(2009)
Development
, vol.136
, pp. 1605-1611
-
-
Das, P.1
-
31
-
-
68249154123
-
Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression
-
Maier A.T., et al. Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development 2009, 136:1613-1620.
-
(2009)
Development
, vol.136
, pp. 1613-1620
-
-
Maier, A.T.1
-
32
-
-
0026598188
-
SUPERMAN, a regulator of floral homeotic genes in Arabidopsis
-
Bowman J.L., et al. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 1992, 114:599-615.
-
(1992)
Development
, vol.114
, pp. 599-615
-
-
Bowman, J.L.1
-
33
-
-
0032993292
-
CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS
-
Alvarez J., Smyth D.R. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 1999, 126:2377-2386.
-
(1999)
Development
, vol.126
, pp. 2377-2386
-
-
Alvarez, J.1
Smyth, D.R.2
-
34
-
-
0036144482
-
CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana
-
Alvarez J., Smyth D.R. CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. Int. J. Plant Sci. 2002, 163:17-41.
-
(2002)
Int. J. Plant Sci.
, vol.163
, pp. 17-41
-
-
Alvarez, J.1
Smyth, D.R.2
-
35
-
-
84864402582
-
JAIBA, a class II HD-ZIP transcription factor involved in the regulation of meristematic activity and important for correct gynoecium and fruit development in Arabidopsis
-
Zuñiga-Mayo V.M., et al. JAIBA, a class II HD-ZIP transcription factor involved in the regulation of meristematic activity and important for correct gynoecium and fruit development in Arabidopsis. Plant J. 2012, 71:314-326.
-
(2012)
Plant J.
, vol.71
, pp. 314-326
-
-
Zuñiga-Mayo, V.M.1
-
36
-
-
84868529916
-
The class II HD-ZIP JAIBA gene is involved in meristematic activity and important for gynoecium and fruit development in Arabidopsis
-
Zuñiga-Mayo V.M., et al. The class II HD-ZIP JAIBA gene is involved in meristematic activity and important for gynoecium and fruit development in Arabidopsis. Plant Signal. Behav. 2012, 7:1501-1503.
-
(2012)
Plant Signal. Behav.
, vol.7
, pp. 1501-1503
-
-
Zuñiga-Mayo, V.M.1
-
37
-
-
80052659346
-
CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems
-
Durbak A.R., Tax F.E. CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems. Genetics 2011, 189:177-194.
-
(2011)
Genetics
, vol.189
, pp. 177-194
-
-
Durbak, A.R.1
Tax, F.E.2
-
38
-
-
0030070190
-
A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis
-
Long J.A., et al. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 1996, 379:66-69.
-
(1996)
Nature
, vol.379
, pp. 66-69
-
-
Long, J.A.1
-
39
-
-
34249807009
-
The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis
-
Scofield S., et al. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J. 2007, 50:767-781.
-
(2007)
Plant J.
, vol.50
, pp. 767-781
-
-
Scofield, S.1
-
40
-
-
0030087763
-
AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth
-
Elliott R.C., et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 1996, 8:155-168.
-
(1996)
Plant Cell
, vol.8
, pp. 155-168
-
-
Elliott, R.C.1
-
41
-
-
68249140337
-
AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning
-
Krizek B. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol. 2009, 150:1916-1929.
-
(2009)
Plant Physiol.
, vol.150
, pp. 1916-1929
-
-
Krizek, B.1
-
42
-
-
79960222750
-
Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family
-
Krizek B.A. Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family. J. Exp. Bot. 2011, 62:3311-3319.
-
(2011)
J. Exp. Bot.
, vol.62
, pp. 3311-3319
-
-
Krizek, B.A.1
-
43
-
-
0034681156
-
Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis
-
Mizukami Y., Fischer R.L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:942-947.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 942-947
-
-
Mizukami, Y.1
Fischer, R.L.2
-
44
-
-
75949107013
-
SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis
-
Bao F., et al. SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis. Plant Physiol. 2010, 152:821-836.
-
(2010)
Plant Physiol.
, vol.152
, pp. 821-836
-
-
Bao, F.1
-
45
-
-
72649087073
-
A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development
-
Colombo M., et al. A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Dev. Biol. 2010, 337:294-302.
-
(2010)
Dev. Biol.
, vol.337
, pp. 294-302
-
-
Colombo, M.1
-
46
-
-
33745940504
-
AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes
-
Nole-Wilson S., Krizek B.A. AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiol. 2006, 141:977-987.
-
(2006)
Plant Physiol.
, vol.141
, pp. 977-987
-
-
Nole-Wilson, S.1
Krizek, B.A.2
-
47
-
-
0033768403
-
Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA
-
Liu Z.C., et al. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 2000, 12:1879-1891.
-
(2000)
Plant Cell
, vol.12
, pp. 1879-1891
-
-
Liu, Z.C.1
-
48
-
-
77956486883
-
Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development
-
Nole-Wilson S., et al. Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biol. 2010, 10:198.
-
(2010)
BMC Plant Biol.
, vol.10
, pp. 198
-
-
Nole-Wilson, S.1
-
49
-
-
0036333380
-
SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG
-
Franks R.G., et al. SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development 2002, 129:253-263.
-
(2002)
Development
, vol.129
, pp. 253-263
-
-
Franks, R.G.1
-
50
-
-
33748795801
-
APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development
-
Sridhar V.V., et al. APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 2006, 133:3159-3166.
-
(2006)
Development
, vol.133
, pp. 3159-3166
-
-
Sridhar, V.V.1
-
51
-
-
29544431710
-
Genetic control of shoot organ boundaries
-
Aida M., Tasaka M. Genetic control of shoot organ boundaries. Curr. Opin. Plant Biol. 2006, 9:72-77.
-
(2006)
Curr. Opin. Plant Biol.
, vol.9
, pp. 72-77
-
-
Aida, M.1
Tasaka, M.2
-
52
-
-
0033965618
-
Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana
-
Ishida T., et al. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 2000, 41:60-67.
-
(2000)
Plant Cell Physiol.
, vol.41
, pp. 60-67
-
-
Ishida, T.1
-
53
-
-
84862182243
-
Interactions of CUP-SHAPED COTYLEDON and SPATULA genes control carpel margin development in Arabidopsis thaliana
-
Nahar M.A., et al. Interactions of CUP-SHAPED COTYLEDON and SPATULA genes control carpel margin development in Arabidopsis thaliana. Plant Cell Physiol. 2012, 53:1134-1143.
-
(2012)
Plant Cell Physiol.
, vol.53
, pp. 1134-1143
-
-
Nahar, M.A.1
-
54
-
-
0032692566
-
Distinct mechanisms promote polarity establishment in carpels of Arabidopsis
-
Eshed Y., et al. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 1999, 99:199-209.
-
(1999)
Cell
, vol.99
, pp. 199-209
-
-
Eshed, Y.1
-
55
-
-
0034141287
-
The YABBY gene family and abaxial cell fate
-
Bowman J.L. The YABBY gene family and abaxial cell fate. Curr. Opin. Plant Biol. 2000, 3:17-22.
-
(2000)
Curr. Opin. Plant Biol.
, vol.3
, pp. 17-22
-
-
Bowman, J.L.1
-
56
-
-
82355169005
-
SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development
-
Groszmann M., et al. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant J. 2011, 68:816-829.
-
(2011)
Plant J.
, vol.68
, pp. 816-829
-
-
Groszmann, M.1
-
57
-
-
84870187082
-
Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis
-
Kay P., et al. Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis. New Phytol. 2013, 197:73-87.
-
(2013)
New Phytol.
, vol.197
, pp. 73-87
-
-
Kay, P.1
-
58
-
-
0141727531
-
The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit
-
Roeder A.H.K., et al. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr. Biol. 2003, 13:1630-1635.
-
(2003)
Curr. Biol.
, vol.13
, pp. 1630-1635
-
-
Roeder, A.H.K.1
-
59
-
-
34547778039
-
Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene
-
Alonso-Cantabrana H., et al. Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Development 2007, 134:2663-2671.
-
(2007)
Development
, vol.134
, pp. 2663-2671
-
-
Alonso-Cantabrana, H.1
-
60
-
-
84871939837
-
The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit
-
Romera-Branchat M., et al. The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. Plant J. 2013, 73:37-49.
-
(2013)
Plant J.
, vol.73
, pp. 37-49
-
-
Romera-Branchat, M.1
-
61
-
-
28044461492
-
A genetic framework for fruit patterning in Arabidopsis thaliana
-
Dinneny J.R., et al. A genetic framework for fruit patterning in Arabidopsis thaliana. Development 2005, 132:4687-4696.
-
(2005)
Development
, vol.132
, pp. 4687-4696
-
-
Dinneny, J.R.1
-
62
-
-
84870693830
-
Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit
-
Gonzalez-Reig S., et al. Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit. PLoS Genet. 2012, 8:e1003020.
-
(2012)
PLoS Genet.
, vol.8
-
-
Gonzalez-Reig, S.1
-
63
-
-
78049334183
-
On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development
-
Wollmann H., et al. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 2010, 137:3633-3642.
-
(2010)
Development
, vol.137
, pp. 3633-3642
-
-
Wollmann, H.1
-
64
-
-
80755152964
-
A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development
-
Ripoll J.J., et al. A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Development 2011, 138:5167-5176.
-
(2011)
Development
, vol.138
, pp. 5167-5176
-
-
Ripoll, J.J.1
-
65
-
-
2642701744
-
The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development
-
Gu Q., et al. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 1998, 125:1509-1517.
-
(1998)
Development
, vol.125
, pp. 1509-1517
-
-
Gu, Q.1
-
66
-
-
0039842580
-
Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development
-
Ferrandiz C., et al. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 2000, 289:436-438.
-
(2000)
Science
, vol.289
, pp. 436-438
-
-
Ferrandiz, C.1
-
67
-
-
36148948633
-
The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana
-
Gremski K., et al. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development 2007, 134:3593-3601.
-
(2007)
Development
, vol.134
, pp. 3593-3601
-
-
Gremski, K.1
-
68
-
-
34250792997
-
The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana
-
Crawford B.C.W., et al. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr. Biol. 2007, 17:1101-1108.
-
(2007)
Curr. Biol.
, vol.17
, pp. 1101-1108
-
-
Crawford, B.C.W.1
-
69
-
-
84894410745
-
Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana
-
Chung K.S., et al. Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana. Mol. Cell 2013, 35:519-525.
-
(2013)
Mol. Cell
, vol.35
, pp. 519-525
-
-
Chung, K.S.1
-
70
-
-
79959470412
-
HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana
-
Crawford B.C., Yanofsky M.F. HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 2011, 138:2999-3009.
-
(2011)
Development
, vol.138
, pp. 2999-3009
-
-
Crawford, B.C.1
Yanofsky, M.F.2
-
71
-
-
79952756874
-
CESTA, a positive regulator of brassinosteroid biosynthesis
-
Poppenberger B., et al. CESTA, a positive regulator of brassinosteroid biosynthesis. EMBO J. 2011, 30:1149-1161.
-
(2011)
EMBO J.
, vol.30
, pp. 1149-1161
-
-
Poppenberger, B.1
-
72
-
-
33745079253
-
Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner
-
Kuusk S., et al. Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. Plant J. 2006, 47:99-111.
-
(2006)
Plant J.
, vol.47
, pp. 99-111
-
-
Kuusk, S.1
-
73
-
-
0036801063
-
STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development
-
Kuusk S., et al. STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development. Development 2002, 129:4707-4717.
-
(2002)
Development
, vol.129
, pp. 4707-4717
-
-
Kuusk, S.1
-
74
-
-
67651111750
-
The NGATHA genes direct style development in the Arabidopsis gynoecium
-
Trigueros M., et al. The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell 2009, 21:1394-1409.
-
(2009)
Plant Cell
, vol.21
, pp. 1394-1409
-
-
Trigueros, M.1
-
75
-
-
67651095705
-
The NGATHA distal organ development genes are essential for style specification in Arabidopsis
-
Alvarez J.P., et al. The NGATHA distal organ development genes are essential for style specification in Arabidopsis. Plant Cell 2009, 21:1373-1393.
-
(2009)
Plant Cell
, vol.21
, pp. 1373-1393
-
-
Alvarez, J.P.1
-
76
-
-
82755161228
-
INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis
-
Girin T., et al. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. Plant Cell 2011, 23:3641-3653.
-
(2011)
Plant Cell
, vol.23
, pp. 3641-3653
-
-
Girin, T.1
-
77
-
-
1642634998
-
Control of fruit patterning in Arabidopsis by INDEHISCENT
-
Liljegren S.J., et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 2004, 116:843-853.
-
(2004)
Cell
, vol.116
, pp. 843-853
-
-
Liljegren, S.J.1
-
78
-
-
33745602479
-
Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis
-
Cheng Y., et al. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006, 20:1790-1799.
-
(2006)
Genes Dev.
, vol.20
, pp. 1790-1799
-
-
Cheng, Y.1
-
79
-
-
41149143843
-
TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development
-
Stepanova A.N., et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 2008, 133:177-191.
-
(2008)
Cell
, vol.133
, pp. 177-191
-
-
Stepanova, A.N.1
-
80
-
-
0000927158
-
Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation
-
Okada K., et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 1991, 3:677-684.
-
(1991)
Plant Cell
, vol.3
, pp. 677-684
-
-
Okada, K.1
-
81
-
-
0345167799
-
Local, efflux-dependent auxin gradients as a common module for plant organ formation
-
Benkova E., et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 2003, 115:591-602.
-
(2003)
Cell
, vol.115
, pp. 591-602
-
-
Benkova, E.1
-
82
-
-
0028878580
-
Morphogenesis in pinoid mutants of Arabidopsis thaliana
-
Bennett S.R.M., et al. Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 1995, 8:505-520.
-
(1995)
Plant J.
, vol.8
, pp. 505-520
-
-
Bennett, S.R.M.1
-
83
-
-
7444265881
-
A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux
-
Friml J., et al. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 2004, 306:862-865.
-
(2004)
Science
, vol.306
, pp. 862-865
-
-
Friml, J.1
-
84
-
-
0029008098
-
Arabidopsis gynoecium structure in the wild and in ettin mutants
-
Sessions R.A., Zambryski P.C. Arabidopsis gynoecium structure in the wild and in ettin mutants. Development 1995, 121:1519-1532.
-
(1995)
Development
, vol.121
, pp. 1519-1532
-
-
Sessions, R.A.1
Zambryski, P.C.2
-
85
-
-
84870683131
-
Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses
-
Fuentes S., et al. Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. Plant Cell 2012, 24:3982-3996.
-
(2012)
Plant Cell
, vol.24
, pp. 3982-3996
-
-
Fuentes, S.1
-
86
-
-
77950345640
-
The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis
-
Eklund D.M., et al. The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 2010, 22:349-363.
-
(2010)
Plant Cell
, vol.22
, pp. 349-363
-
-
Eklund, D.M.1
-
87
-
-
33745077058
-
STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium
-
Sohlberg J.J., et al. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J. 2006, 47:112-123.
-
(2006)
Plant J.
, vol.47
, pp. 112-123
-
-
Sohlberg, J.J.1
-
88
-
-
79952751751
-
Model for the regulation of Arabidopsis thaliana leaf margin development
-
Bilsborough G.D., et al. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3424-3429.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 3424-3429
-
-
Bilsborough, G.D.1
-
89
-
-
84877122133
-
The bHLH transcription factor SPATULA is a key regulator of organ size in Arabidopsis thaliana
-
Makkena S., Lamb R.S. The bHLH transcription factor SPATULA is a key regulator of organ size in Arabidopsis thaliana. Plant Signal. Behav. 2013, 8:e24140.
-
(2013)
Plant Signal. Behav.
, vol.8
-
-
Makkena, S.1
Lamb, R.S.2
-
90
-
-
24044485242
-
Arabidopsis KNOXI proteins activate cytokinin biosynthesis
-
Yanai O., et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol. 2005, 15:1566-1571.
-
(2005)
Curr. Biol.
, vol.15
, pp. 1566-1571
-
-
Yanai, O.1
-
91
-
-
80053564805
-
TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis
-
Kieffer M., et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J. 2011, 68:147-158.
-
(2011)
Plant J.
, vol.68
, pp. 147-158
-
-
Kieffer, M.1
-
92
-
-
84857701849
-
The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers
-
Steiner E., et al. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 2012, 24:96-108.
-
(2012)
Plant Cell
, vol.24
, pp. 96-108
-
-
Steiner, E.1
-
93
-
-
84871729280
-
Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3
-
Cheng Z.J., et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol. 2013, 161:240-251.
-
(2013)
Plant Physiol.
, vol.161
, pp. 240-251
-
-
Cheng, Z.J.1
-
94
-
-
0033792717
-
Auxin and ETTIN in Arabidopsis gynoecium morphogenesis
-
Nemhauser J., et al. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 2000, 127:3877-3888.
-
(2000)
Development
, vol.127
, pp. 3877-3888
-
-
Nemhauser, J.1
-
95
-
-
0035035187
-
SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein
-
Heisler M.G.B., et al. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development 2001, 128:1089-1098.
-
(2001)
Development
, vol.128
, pp. 1089-1098
-
-
Heisler, M.G.B.1
-
96
-
-
55649110533
-
Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium
-
Staldal V., et al. Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium. New Phytol. 2008, 180:798-808.
-
(2008)
New Phytol.
, vol.180
, pp. 798-808
-
-
Staldal, V.1
-
97
-
-
84867578298
-
The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning
-
Marsch-Martinez N., et al. The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. Plant J. 2012, 72:222-234.
-
(2012)
Plant J.
, vol.72
, pp. 222-234
-
-
Marsch-Martinez, N.1
-
98
-
-
45749109424
-
Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis
-
Muller B., Sheen J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 2008, 453:1094-1097.
-
(2008)
Nature
, vol.453
, pp. 1094-1097
-
-
Muller, B.1
Sheen, J.2
-
99
-
-
84878306681
-
Auxin and the Arabidopsis thaliana gynoecium
-
Larsson E., et al. Auxin and the Arabidopsis thaliana gynoecium. J. Exp. Bot. 2013, 64:2619-2627.
-
(2013)
J. Exp. Bot.
, vol.64
, pp. 2619-2627
-
-
Larsson, E.1
-
100
-
-
29244489097
-
WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators
-
Leibfried A., et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 2005, 438:1172-1175.
-
(2005)
Nature
, vol.438
, pp. 1172-1175
-
-
Leibfried, A.1
-
101
-
-
84875066082
-
Crossing paths: cytokinin signalling and crosstalk
-
El-Showk S., et al. Crossing paths: cytokinin signalling and crosstalk. Development 2013, 140:1373-1383.
-
(2013)
Development
, vol.140
, pp. 1373-1383
-
-
El-Showk, S.1
-
102
-
-
62149093094
-
A regulated auxin minimum is required for seed dispersal in Arabidopsis
-
Sorefan K., et al. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 2009, 459:583-586.
-
(2009)
Nature
, vol.459
, pp. 583-586
-
-
Sorefan, K.1
-
103
-
-
79959961285
-
Stem cell activation by light guides plant organogenesis
-
Yoshida S., et al. Stem cell activation by light guides plant organogenesis. Genes Dev. 2011, 25:1439-1450.
-
(2011)
Genes Dev.
, vol.25
, pp. 1439-1450
-
-
Yoshida, S.1
-
104
-
-
84871331786
-
Hormones talking: does hormonal cross-talk shape the Arabidopsis gynoecium?
-
Marsch-Martinez N., et al. Hormones talking: does hormonal cross-talk shape the Arabidopsis gynoecium?. Plant Signal. Behav. 2012, 7:1698-1701.
-
(2012)
Plant Signal. Behav.
, vol.7
, pp. 1698-1701
-
-
Marsch-Martinez, N.1
-
105
-
-
84863945831
-
Cytokinin signaling networks
-
Hwang I., et al. Cytokinin signaling networks. Annu. Rev. Plant Biol. 2012, 63:353-380.
-
(2012)
Annu. Rev. Plant Biol.
, vol.63
, pp. 353-380
-
-
Hwang, I.1
-
106
-
-
84870782793
-
Gene regulation by cytokinin in Arabidopsis
-
Brenner W.G., et al. Gene regulation by cytokinin in Arabidopsis. Front. Plant Sci. 2012, 3:8.
-
(2012)
Front. Plant Sci.
, vol.3
, pp. 8
-
-
Brenner, W.G.1
-
107
-
-
84877069565
-
Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis
-
Bhargava A., et al. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol. 2013, 162:272-294.
-
(2013)
Plant Physiol.
, vol.162
, pp. 272-294
-
-
Bhargava, A.1
-
108
-
-
77954269901
-
The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function
-
Warde-Farley D., et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38:W214-W220.
-
(2010)
Nucleic Acids Res.
, vol.38
-
-
Warde-Farley, D.1
-
109
-
-
0034143440
-
A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis
-
Gillissen B., et al. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 2000, 12:291-300.
-
(2000)
Plant Cell
, vol.12
, pp. 291-300
-
-
Gillissen, B.1
-
110
-
-
57749088449
-
Characterization of cytokinin and adenine transport in Arabidopsis cell cultures
-
Cedzich A., et al. Characterization of cytokinin and adenine transport in Arabidopsis cell cultures. Plant Physiol. 2008, 148:1857-1867.
-
(2008)
Plant Physiol.
, vol.148
, pp. 1857-1867
-
-
Cedzich, A.1
-
111
-
-
0030844387
-
Gynoecium diversity and systematics of the Magnoliales and winteroids
-
Igersheim A., Endress P.K. Gynoecium diversity and systematics of the Magnoliales and winteroids. Bot. J. Linn. Soc. 1997, 124:213-271.
-
(1997)
Bot. J. Linn. Soc.
, vol.124
, pp. 213-271
-
-
Igersheim, A.1
Endress, P.K.2
-
112
-
-
0033708683
-
Gynoecium structure and evolution in basal angiosperms
-
Endress P.K., Anton I. Gynoecium structure and evolution in basal angiosperms. Int. J. Plant Sci. 2000, 161:S211-S213.
-
(2000)
Int. J. Plant Sci.
, vol.161
-
-
Endress, P.K.1
Anton, I.2
-
113
-
-
33750630407
-
Angiosperm floral evolution: morphological developmental framework
-
Academic Press
-
Endress P.K. Angiosperm floral evolution: morphological developmental framework. Advances in Botanical Research 2006, Vol. 44:1-61. Academic Press.
-
(2006)
Advances in Botanical Research
, vol.44
, pp. 1-61
-
-
Endress, P.K.1
-
114
-
-
79952764975
-
Evolutionary diversification of the flowers in angiosperms
-
Endress P.K. Evolutionary diversification of the flowers in angiosperms. Am. J. Bot. 2011, 98:370-396.
-
(2011)
Am. J. Bot.
, vol.98
, pp. 370-396
-
-
Endress, P.K.1
-
115
-
-
33846602240
-
Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers
-
Bateman R.M., et al. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers. J. Exp. Bot. 2006, 57:3471-3503.
-
(2006)
J. Exp. Bot.
, vol.57
, pp. 3471-3503
-
-
Bateman, R.M.1
-
116
-
-
33747878583
-
An evolutionary perspective on the regulation of carpel development
-
Scutt C.P., et al. An evolutionary perspective on the regulation of carpel development. J. Exp. Bot. 2006, 57:2143-2152.
-
(2006)
J. Exp. Bot.
, vol.57
, pp. 2143-2152
-
-
Scutt, C.P.1
-
117
-
-
37549054097
-
After a dozen years of progress the origin of angiosperms is still a great mystery
-
Frohlich M.W., Chase M.W. After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 2007, 450:1184-1189.
-
(2007)
Nature
, vol.450
, pp. 1184-1189
-
-
Frohlich, M.W.1
Chase, M.W.2
-
118
-
-
60249097851
-
Reconstructing the ancestral angiosperm flower and its initial specializations
-
Endress P.K., Doyle J.A. Reconstructing the ancestral angiosperm flower and its initial specializations. Am. J. Bot. 2009, 96:22-66.
-
(2009)
Am. J. Bot.
, vol.96
, pp. 22-66
-
-
Endress, P.K.1
Doyle, J.A.2
-
119
-
-
0028133759
-
Floral structure and evolution of primitive angiosperms: recent advances
-
Endress P. Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst. Evol. 1994, 192:79-97.
-
(1994)
Plant Syst. Evol.
, vol.192
, pp. 79-97
-
-
Endress, P.1
-
120
-
-
58849142931
-
Comparative gynoecium structure and development in Calycanthaceae (Laurales)
-
'Yannick M., et al. Comparative gynoecium structure and development in Calycanthaceae (Laurales). Int. J. Plant Sci. 2009, 170:21-41.
-
(2009)
Int. J. Plant Sci.
, vol.170
, pp. 21-41
-
-
'Yannick, M.1
-
121
-
-
15444363834
-
Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms
-
Fourquin C., et al. Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:4649-4654.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 4649-4654
-
-
Fourquin, C.1
-
122
-
-
34548206355
-
Functional conservation between CRABS CLAW orthologues from widely diverged angiosperms
-
Fourquin C., et al. Functional conservation between CRABS CLAW orthologues from widely diverged angiosperms. Ann. Bot. 2007, 100:651-657.
-
(2007)
Ann. Bot.
, vol.100
, pp. 651-657
-
-
Fourquin, C.1
-
123
-
-
65949090511
-
Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower
-
Kaufmann K., et al. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 2009, 7:e1000090.
-
(2009)
PLoS Biol.
, vol.7
-
-
Kaufmann, K.1
-
124
-
-
84979819147
-
Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2
-
Yant L., et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 2010, 22:2156-2170.
-
(2010)
Plant Cell
, vol.22
, pp. 2156-2170
-
-
Yant, L.1
-
125
-
-
84866743105
-
Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses
-
Brandt R., et al. Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Plant J. 2012, 72:31-42.
-
(2012)
Plant J.
, vol.72
, pp. 31-42
-
-
Brandt, R.1
-
126
-
-
14044270789
-
Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis
-
Gómez-Mena C., et al. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 2005, 132:429-438.
-
(2005)
Development
, vol.132
, pp. 429-438
-
-
Gómez-Mena, C.1
-
127
-
-
84865335587
-
A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA
-
Reymond M.C., et al. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA. Plant Cell 2012, 24:2812-2825.
-
(2012)
Plant Cell
, vol.24
, pp. 2812-2825
-
-
Reymond, M.C.1
-
128
-
-
84862778624
-
The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering
-
Staldal V., et al. The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Mol. Biol. 2012, 78:545-559.
-
(2012)
Plant Mol. Biol.
, vol.78
, pp. 545-559
-
-
Staldal, V.1
-
129
-
-
79961177160
-
A mechanistic link between STM and CUC1 during Arabidopsis development
-
Spinelli S.V., et al. A mechanistic link between STM and CUC1 during Arabidopsis development. Plant Physiol. 2011, 156:1894-1904.
-
(2011)
Plant Physiol.
, vol.156
, pp. 1894-1904
-
-
Spinelli, S.V.1
-
130
-
-
84866788710
-
FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor
-
Bonaccorso O., et al. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor. BMC Plant Biol. 2012, 12:176.
-
(2012)
BMC Plant Biol.
, vol.12
, pp. 176
-
-
Bonaccorso, O.1
-
131
-
-
23944492980
-
Comprehensive interaction map of the Arabidopsis MADS box transcription factors
-
de Folter S., et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 2005, 17:1424-1433.
-
(2005)
Plant Cell
, vol.17
, pp. 1424-1433
-
-
de Folter, S.1
-
132
-
-
0025465516
-
Early flower development in Arabidopsis
-
Smyth D.R., et al. Early flower development in Arabidopsis. Plant Cell 1990, 2:755-767.
-
(1990)
Plant Cell
, vol.2
, pp. 755-767
-
-
Smyth, D.R.1
-
133
-
-
0025171150
-
Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus
-
Carpenter R., Coen E.S. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 1990, 4:1483-1493.
-
(1990)
Genes Dev.
, vol.4
, pp. 1483-1493
-
-
Carpenter, R.1
Coen, E.S.2
-
134
-
-
0000560985
-
Genetic control of flower development by homeotic genes in Antirrhinum majus
-
Schwarz-Sommer Z., et al. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 1990, 250:931-936.
-
(1990)
Science
, vol.250
, pp. 931-936
-
-
Schwarz-Sommer, Z.1
-
135
-
-
0026361853
-
Genetic control of pattern formation during flower development in Arabidopsis
-
Bowman J.L., Meyerowitz E.M. Genetic control of pattern formation during flower development in Arabidopsis. Symp. Soc. Exp. Biol. 1991, 45:89-115.
-
(1991)
Symp. Soc. Exp. Biol.
, vol.45
, pp. 89-115
-
-
Bowman, J.L.1
Meyerowitz, E.M.2
-
136
-
-
84867867552
-
The ABC model of flower development: then and now
-
Bowman J.L., et al. The ABC model of flower development: then and now. Development 2012, 139:4095-4098.
-
(2012)
Development
, vol.139
, pp. 4095-4098
-
-
Bowman, J.L.1
-
137
-
-
0026417225
-
The war of the whorls: genetic interactions controlling flower development
-
Coen E.S., Meyerowitz E.M. The war of the whorls: genetic interactions controlling flower development. Nature 1991, 353:31-37.
-
(1991)
Nature
, vol.353
, pp. 31-37
-
-
Coen, E.S.1
Meyerowitz, E.M.2
-
138
-
-
23944458558
-
Molecular mechanisms of flower development: an armchair guide
-
Krizek B.A., Fletcher J.C. Molecular mechanisms of flower development: an armchair guide. Nat. Rev. Genet. 2005, 6:688-698.
-
(2005)
Nat. Rev. Genet.
, vol.6
, pp. 688-698
-
-
Krizek, B.A.1
Fletcher, J.C.2
-
139
-
-
75849162560
-
Floral organ identity: 20 years of ABCs
-
Causier B., et al. Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 2010, 21:73-79.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 73-79
-
-
Causier, B.1
-
140
-
-
75849155011
-
The 'ABC' of MADS domain protein behaviour and interactions
-
Immink R.G., et al. The 'ABC' of MADS domain protein behaviour and interactions. Semin. Cell Dev. Biol. 2010, 21:87-93.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 87-93
-
-
Immink, R.G.1
-
141
-
-
63449130930
-
SEPALLATA3: the 'glue' for MADS box transcription factor complex formation
-
Immink R.G., et al. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biol. 2009, 10:R24.
-
(2009)
Genome Biol.
, vol.10
-
-
Immink, R.G.1
-
142
-
-
84887023681
-
The MADS symphonies of transcriptional regulation
-
Marsch-Martínez N., et al. The MADS symphonies of transcriptional regulation. Front. Plant Sci. 2011, 2:26.
-
(2011)
Front. Plant Sci.
, vol.2
, pp. 26
-
-
Marsch-Martínez, N.1
-
143
-
-
79751525328
-
MADS: the missing link between identity and growth?
-
Dornelas M.C., et al. MADS: the missing link between identity and growth?. Trends Plant Sci. 2011, 16:89-97.
-
(2011)
Trends Plant Sci.
, vol.16
, pp. 89-97
-
-
Dornelas, M.C.1
-
144
-
-
75849116362
-
Genes and functions controlled by floral organ identity genes
-
Sablowski R. Genes and functions controlled by floral organ identity genes. Semin. Cell Dev. Biol. 2010, 21:94-99.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 94-99
-
-
Sablowski, R.1
-
145
-
-
84864818803
-
Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies
-
Smaczniak C., et al. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 2012, 139:3081-3098.
-
(2012)
Development
, vol.139
, pp. 3081-3098
-
-
Smaczniak, C.1
-
146
-
-
16244362244
-
A gene expression map of Arabidopsis thaliana development
-
Schmid M., et al. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 2005, 37:501-506.
-
(2005)
Nat. Genet.
, vol.37
, pp. 501-506
-
-
Schmid, M.1
|