메뉴 건너뛰기




Volumn 18, Issue 11, 2013, Pages 644-655

Inside the gynoecium: At the carpel margin

Author keywords

[No Author keywords available]

Indexed keywords

ARABIDOPSIS; ARABIDOPSIS GYNOECIUM;

EID: 84887019607     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2013.08.002     Document Type: Review
Times cited : (95)

References (146)
  • 2
    • 34547760022 scopus 로고    scopus 로고
    • Patterning the female side of Arabidopsis: the importance of hormones
    • Balanza V., et al. Patterning the female side of Arabidopsis: the importance of hormones. J. Exp. Bot. 2006, 57:3457-3469.
    • (2006) J. Exp. Bot. , vol.57 , pp. 3457-3469
    • Balanza, V.1
  • 4
    • 77958137199 scopus 로고    scopus 로고
    • Carpel development
    • Academic Press
    • Ferrándiz C., et al. Carpel development. Advances in Botanical Research 2010, Vol. 55:1-73. Academic Press.
    • (2010) Advances in Botanical Research , vol.55 , pp. 1-73
    • Ferrándiz, C.1
  • 5
    • 0032611228 scopus 로고    scopus 로고
    • Molecular genetics of gynoecium development in Arabidopsis
    • Bowman J.L., et al. Molecular genetics of gynoecium development in Arabidopsis. Curr. Top. Dev. Biol. 1999, 45:155-205.
    • (1999) Curr. Top. Dev. Biol. , vol.45 , pp. 155-205
    • Bowman, J.L.1
  • 6
    • 48949120198 scopus 로고    scopus 로고
    • SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development
    • Azhakanandam S., et al. SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development. Plant Physiol. 2008, 146:1165-1181.
    • (2008) Plant Physiol. , vol.146 , pp. 1165-1181
    • Azhakanandam, S.1
  • 7
    • 77956879407 scopus 로고    scopus 로고
    • Polar auxin transport together with aintegumenta and revoluta coordinate early Arabidopsis gynoecium development
    • Nole-Wilson S., et al. Polar auxin transport together with aintegumenta and revoluta coordinate early Arabidopsis gynoecium development. Dev. Biol. 2010, 346:181-195.
    • (2010) Dev. Biol. , vol.346 , pp. 181-195
    • Nole-Wilson, S.1
  • 8
    • 80054838468 scopus 로고    scopus 로고
    • Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana
    • Wynn A.N., et al. Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana. PLoS ONE 2011, 6:e26231.
    • (2011) PLoS ONE , vol.6
    • Wynn, A.N.1
  • 9
    • 77952343211 scopus 로고    scopus 로고
    • Meristematic sculpting in fruit development
    • Girin T., et al. Meristematic sculpting in fruit development. J. Exp. Bot. 2009, 60:1493-1502.
    • (2009) J. Exp. Bot. , vol.60 , pp. 1493-1502
    • Girin, T.1
  • 12
    • 66149162003 scopus 로고    scopus 로고
    • A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis
    • Larue C.T., et al. A microRNA-transcription factor module regulates lateral organ size and patterning in Arabidopsis. Plant J. 2009, 58:450-463.
    • (2009) Plant J. , vol.58 , pp. 450-463
    • Larue, C.T.1
  • 13
    • 34247369438 scopus 로고    scopus 로고
    • Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness
    • Sieber P., et al. Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 2007, 134:1051-1060.
    • (2007) Development , vol.134 , pp. 1051-1060
    • Sieber, P.1
  • 14
    • 0032472373 scopus 로고    scopus 로고
    • AGO1 defines a novel locus of Arabidopsis controlling leaf development
    • Bohmert K., et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 1998, 17:170-180.
    • (1998) EMBO J. , vol.17 , pp. 170-180
    • Bohmert, K.1
  • 15
    • 79953744170 scopus 로고    scopus 로고
    • ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis
    • Ji L., et al. ARGONAUTE10 and ARGONAUTE1 regulate the termination of floral stem cells through two microRNAs in Arabidopsis. PLoS Genet. 2011, 7:e1001358.
    • (2011) PLoS Genet. , vol.7
    • Ji, L.1
  • 16
    • 0035945635 scopus 로고    scopus 로고
    • Complexes of MADS-box proteins are sufficient to convert leaves into floral organs
    • Honma T., Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 2001, 409:525-529.
    • (2001) Nature , vol.409 , pp. 525-529
    • Honma, T.1    Goto, K.2
  • 17
    • 0025371984 scopus 로고
    • The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors
    • Yanofsky M.F., et al. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 1990, 346:35-39.
    • (1990) Nature , vol.346 , pp. 35-39
    • Yanofsky, M.F.1
  • 18
    • 0024301235 scopus 로고
    • Genes directing flower development in Arabidopsis
    • Bowman J.L., et al. Genes directing flower development in Arabidopsis. Plant Cell 1989, 1:37-52.
    • (1989) Plant Cell , vol.1 , pp. 37-52
    • Bowman, J.L.1
  • 19
    • 0025891885 scopus 로고
    • Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product
    • Drews G.N., et al. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 1991, 65:991-1002.
    • (1991) Cell , vol.65 , pp. 991-1002
    • Drews, G.N.1
  • 20
    • 0035875070 scopus 로고    scopus 로고
    • Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS
    • Lenhard M., et al. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 2001, 105:805.
    • (2001) Cell , vol.105 , pp. 805
    • Lenhard, M.1
  • 21
    • 0035875045 scopus 로고    scopus 로고
    • A molecular link between stem cell regulation and floral patterning in Arabidopsis
    • Lohmann J.U., et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 2001, 105:793-803.
    • (2001) Cell , vol.105 , pp. 793-803
    • Lohmann, J.U.1
  • 22
    • 82755174071 scopus 로고    scopus 로고
    • AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins
    • Liu X., et al. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 2011, 23:3654-3670.
    • (2011) Plant Cell , vol.23 , pp. 3654-3670
    • Liu, X.1
  • 23
    • 68149157964 scopus 로고    scopus 로고
    • A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem
    • Sun B., et al. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev. 2009, 23:1791-1804.
    • (2009) Genes Dev. , vol.23 , pp. 1791-1804
    • Sun, B.1
  • 24
    • 77953235345 scopus 로고    scopus 로고
    • Floral stem cells: from dynamic balance towards termination
    • Sun B., Ito T. Floral stem cells: from dynamic balance towards termination. Biochem. Soc. Trans. 2010, 38:613-616.
    • (2010) Biochem. Soc. Trans. , vol.38 , pp. 613-616
    • Sun, B.1    Ito, T.2
  • 25
    • 34247224266 scopus 로고    scopus 로고
    • Flowering and determinacy in Arabidopsis
    • Sablowski R. Flowering and determinacy in Arabidopsis. J. Exp. Bot. 2007, 58:899-907.
    • (2007) J. Exp. Bot. , vol.58 , pp. 899-907
    • Sablowski, R.1
  • 26
    • 68249162470 scopus 로고    scopus 로고
    • Time to stop: flower meristem termination
    • Prunet N., et al. Time to stop: flower meristem termination. Plant Physiol. 2009, 150:1764-1772.
    • (2009) Plant Physiol. , vol.150 , pp. 1764-1772
    • Prunet, N.1
  • 27
    • 79952304237 scopus 로고    scopus 로고
    • Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana
    • Bartrina I., et al. Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 2011, 23:69-80.
    • (2011) Plant Cell , vol.23 , pp. 69-80
    • Bartrina, I.1
  • 28
    • 0034677650 scopus 로고    scopus 로고
    • The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes
    • Schoof H., et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 2000, 100:635-644.
    • (2000) Cell , vol.100 , pp. 635-644
    • Schoof, H.1
  • 29
    • 48549092490 scopus 로고    scopus 로고
    • REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana
    • Prunet N., et al. REBELOTE, SQUINT, and ULTRAPETALA1 function redundantly in the temporal regulation of floral meristem termination in Arabidopsis thaliana. Plant Cell 2008, 20:901-919.
    • (2008) Plant Cell , vol.20 , pp. 901-919
    • Prunet, N.1
  • 30
    • 68249145361 scopus 로고    scopus 로고
    • Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA
    • Das P., et al. Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA. Development 2009, 136:1605-1611.
    • (2009) Development , vol.136 , pp. 1605-1611
    • Das, P.1
  • 31
    • 68249154123 scopus 로고    scopus 로고
    • Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression
    • Maier A.T., et al. Dual roles of the bZIP transcription factor PERIANTHIA in the control of floral architecture and homeotic gene expression. Development 2009, 136:1613-1620.
    • (2009) Development , vol.136 , pp. 1613-1620
    • Maier, A.T.1
  • 32
    • 0026598188 scopus 로고
    • SUPERMAN, a regulator of floral homeotic genes in Arabidopsis
    • Bowman J.L., et al. SUPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development 1992, 114:599-615.
    • (1992) Development , vol.114 , pp. 599-615
    • Bowman, J.L.1
  • 33
    • 0032993292 scopus 로고    scopus 로고
    • CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS
    • Alvarez J., Smyth D.R. CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS. Development 1999, 126:2377-2386.
    • (1999) Development , vol.126 , pp. 2377-2386
    • Alvarez, J.1    Smyth, D.R.2
  • 34
    • 0036144482 scopus 로고    scopus 로고
    • CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana
    • Alvarez J., Smyth D.R. CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. Int. J. Plant Sci. 2002, 163:17-41.
    • (2002) Int. J. Plant Sci. , vol.163 , pp. 17-41
    • Alvarez, J.1    Smyth, D.R.2
  • 35
    • 84864402582 scopus 로고    scopus 로고
    • JAIBA, a class II HD-ZIP transcription factor involved in the regulation of meristematic activity and important for correct gynoecium and fruit development in Arabidopsis
    • Zuñiga-Mayo V.M., et al. JAIBA, a class II HD-ZIP transcription factor involved in the regulation of meristematic activity and important for correct gynoecium and fruit development in Arabidopsis. Plant J. 2012, 71:314-326.
    • (2012) Plant J. , vol.71 , pp. 314-326
    • Zuñiga-Mayo, V.M.1
  • 36
    • 84868529916 scopus 로고    scopus 로고
    • The class II HD-ZIP JAIBA gene is involved in meristematic activity and important for gynoecium and fruit development in Arabidopsis
    • Zuñiga-Mayo V.M., et al. The class II HD-ZIP JAIBA gene is involved in meristematic activity and important for gynoecium and fruit development in Arabidopsis. Plant Signal. Behav. 2012, 7:1501-1503.
    • (2012) Plant Signal. Behav. , vol.7 , pp. 1501-1503
    • Zuñiga-Mayo, V.M.1
  • 37
    • 80052659346 scopus 로고    scopus 로고
    • CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems
    • Durbak A.R., Tax F.E. CLAVATA signaling pathway receptors of Arabidopsis regulate cell proliferation in fruit organ formation as well as in meristems. Genetics 2011, 189:177-194.
    • (2011) Genetics , vol.189 , pp. 177-194
    • Durbak, A.R.1    Tax, F.E.2
  • 38
    • 0030070190 scopus 로고    scopus 로고
    • A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis
    • Long J.A., et al. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 1996, 379:66-69.
    • (1996) Nature , vol.379 , pp. 66-69
    • Long, J.A.1
  • 39
    • 34249807009 scopus 로고    scopus 로고
    • The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis
    • Scofield S., et al. The KNOX gene SHOOT MERISTEMLESS is required for the development of reproductive meristematic tissues in Arabidopsis. Plant J. 2007, 50:767-781.
    • (2007) Plant J. , vol.50 , pp. 767-781
    • Scofield, S.1
  • 40
    • 0030087763 scopus 로고    scopus 로고
    • AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth
    • Elliott R.C., et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. Plant Cell 1996, 8:155-168.
    • (1996) Plant Cell , vol.8 , pp. 155-168
    • Elliott, R.C.1
  • 41
    • 68249140337 scopus 로고    scopus 로고
    • AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning
    • Krizek B. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol. 2009, 150:1916-1929.
    • (2009) Plant Physiol. , vol.150 , pp. 1916-1929
    • Krizek, B.1
  • 42
    • 79960222750 scopus 로고    scopus 로고
    • Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family
    • Krizek B.A. Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family. J. Exp. Bot. 2011, 62:3311-3319.
    • (2011) J. Exp. Bot. , vol.62 , pp. 3311-3319
    • Krizek, B.A.1
  • 43
    • 0034681156 scopus 로고    scopus 로고
    • Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis
    • Mizukami Y., Fischer R.L. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:942-947.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 942-947
    • Mizukami, Y.1    Fischer, R.L.2
  • 44
    • 75949107013 scopus 로고    scopus 로고
    • SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis
    • Bao F., et al. SEUSS and SEUSS-LIKE transcriptional adaptors regulate floral and embryonic development in Arabidopsis. Plant Physiol. 2010, 152:821-836.
    • (2010) Plant Physiol. , vol.152 , pp. 821-836
    • Bao, F.1
  • 45
    • 72649087073 scopus 로고    scopus 로고
    • A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development
    • Colombo M., et al. A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Dev. Biol. 2010, 337:294-302.
    • (2010) Dev. Biol. , vol.337 , pp. 294-302
    • Colombo, M.1
  • 46
    • 33745940504 scopus 로고    scopus 로고
    • AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes
    • Nole-Wilson S., Krizek B.A. AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiol. 2006, 141:977-987.
    • (2006) Plant Physiol. , vol.141 , pp. 977-987
    • Nole-Wilson, S.1    Krizek, B.A.2
  • 47
    • 0033768403 scopus 로고    scopus 로고
    • Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA
    • Liu Z.C., et al. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell 2000, 12:1879-1891.
    • (2000) Plant Cell , vol.12 , pp. 1879-1891
    • Liu, Z.C.1
  • 48
    • 77956486883 scopus 로고    scopus 로고
    • Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development
    • Nole-Wilson S., et al. Synergistic disruptions in seuss cyp85A2 double mutants reveal a role for brassinolide synthesis during gynoecium and ovule development. BMC Plant Biol. 2010, 10:198.
    • (2010) BMC Plant Biol. , vol.10 , pp. 198
    • Nole-Wilson, S.1
  • 49
    • 0036333380 scopus 로고    scopus 로고
    • SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG
    • Franks R.G., et al. SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development 2002, 129:253-263.
    • (2002) Development , vol.129 , pp. 253-263
    • Franks, R.G.1
  • 50
    • 33748795801 scopus 로고    scopus 로고
    • APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development
    • Sridhar V.V., et al. APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development. Development 2006, 133:3159-3166.
    • (2006) Development , vol.133 , pp. 3159-3166
    • Sridhar, V.V.1
  • 51
    • 29544431710 scopus 로고    scopus 로고
    • Genetic control of shoot organ boundaries
    • Aida M., Tasaka M. Genetic control of shoot organ boundaries. Curr. Opin. Plant Biol. 2006, 9:72-77.
    • (2006) Curr. Opin. Plant Biol. , vol.9 , pp. 72-77
    • Aida, M.1    Tasaka, M.2
  • 52
    • 0033965618 scopus 로고    scopus 로고
    • Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana
    • Ishida T., et al. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 2000, 41:60-67.
    • (2000) Plant Cell Physiol. , vol.41 , pp. 60-67
    • Ishida, T.1
  • 53
    • 84862182243 scopus 로고    scopus 로고
    • Interactions of CUP-SHAPED COTYLEDON and SPATULA genes control carpel margin development in Arabidopsis thaliana
    • Nahar M.A., et al. Interactions of CUP-SHAPED COTYLEDON and SPATULA genes control carpel margin development in Arabidopsis thaliana. Plant Cell Physiol. 2012, 53:1134-1143.
    • (2012) Plant Cell Physiol. , vol.53 , pp. 1134-1143
    • Nahar, M.A.1
  • 54
    • 0032692566 scopus 로고    scopus 로고
    • Distinct mechanisms promote polarity establishment in carpels of Arabidopsis
    • Eshed Y., et al. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 1999, 99:199-209.
    • (1999) Cell , vol.99 , pp. 199-209
    • Eshed, Y.1
  • 55
    • 0034141287 scopus 로고    scopus 로고
    • The YABBY gene family and abaxial cell fate
    • Bowman J.L. The YABBY gene family and abaxial cell fate. Curr. Opin. Plant Biol. 2000, 3:17-22.
    • (2000) Curr. Opin. Plant Biol. , vol.3 , pp. 17-22
    • Bowman, J.L.1
  • 56
    • 82355169005 scopus 로고    scopus 로고
    • SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development
    • Groszmann M., et al. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant J. 2011, 68:816-829.
    • (2011) Plant J. , vol.68 , pp. 816-829
    • Groszmann, M.1
  • 57
    • 84870187082 scopus 로고    scopus 로고
    • Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis
    • Kay P., et al. Modifications of a conserved regulatory network involving INDEHISCENT controls multiple aspects of reproductive tissue development in Arabidopsis. New Phytol. 2013, 197:73-87.
    • (2013) New Phytol. , vol.197 , pp. 73-87
    • Kay, P.1
  • 58
    • 0141727531 scopus 로고    scopus 로고
    • The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit
    • Roeder A.H.K., et al. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr. Biol. 2003, 13:1630-1635.
    • (2003) Curr. Biol. , vol.13 , pp. 1630-1635
    • Roeder, A.H.K.1
  • 59
    • 34547778039 scopus 로고    scopus 로고
    • Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene
    • Alonso-Cantabrana H., et al. Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis ASYMMETRIC LEAVES1 gene. Development 2007, 134:2663-2671.
    • (2007) Development , vol.134 , pp. 2663-2671
    • Alonso-Cantabrana, H.1
  • 60
    • 84871939837 scopus 로고    scopus 로고
    • The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit
    • Romera-Branchat M., et al. The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. Plant J. 2013, 73:37-49.
    • (2013) Plant J. , vol.73 , pp. 37-49
    • Romera-Branchat, M.1
  • 61
    • 28044461492 scopus 로고    scopus 로고
    • A genetic framework for fruit patterning in Arabidopsis thaliana
    • Dinneny J.R., et al. A genetic framework for fruit patterning in Arabidopsis thaliana. Development 2005, 132:4687-4696.
    • (2005) Development , vol.132 , pp. 4687-4696
    • Dinneny, J.R.1
  • 62
    • 84870693830 scopus 로고    scopus 로고
    • Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit
    • Gonzalez-Reig S., et al. Antagonistic gene activities determine the formation of pattern elements along the mediolateral axis of the Arabidopsis fruit. PLoS Genet. 2012, 8:e1003020.
    • (2012) PLoS Genet. , vol.8
    • Gonzalez-Reig, S.1
  • 63
    • 78049334183 scopus 로고    scopus 로고
    • On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development
    • Wollmann H., et al. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development. Development 2010, 137:3633-3642.
    • (2010) Development , vol.137 , pp. 3633-3642
    • Wollmann, H.1
  • 64
    • 80755152964 scopus 로고    scopus 로고
    • A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development
    • Ripoll J.J., et al. A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Development 2011, 138:5167-5176.
    • (2011) Development , vol.138 , pp. 5167-5176
    • Ripoll, J.J.1
  • 65
    • 2642701744 scopus 로고    scopus 로고
    • The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development
    • Gu Q., et al. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 1998, 125:1509-1517.
    • (1998) Development , vol.125 , pp. 1509-1517
    • Gu, Q.1
  • 66
    • 0039842580 scopus 로고    scopus 로고
    • Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development
    • Ferrandiz C., et al. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 2000, 289:436-438.
    • (2000) Science , vol.289 , pp. 436-438
    • Ferrandiz, C.1
  • 67
    • 36148948633 scopus 로고    scopus 로고
    • The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana
    • Gremski K., et al. The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development 2007, 134:3593-3601.
    • (2007) Development , vol.134 , pp. 3593-3601
    • Gremski, K.1
  • 68
    • 34250792997 scopus 로고    scopus 로고
    • The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana
    • Crawford B.C.W., et al. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr. Biol. 2007, 17:1101-1108.
    • (2007) Curr. Biol. , vol.17 , pp. 1101-1108
    • Crawford, B.C.W.1
  • 69
    • 84894410745 scopus 로고    scopus 로고
    • Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana
    • Chung K.S., et al. Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana. Mol. Cell 2013, 35:519-525.
    • (2013) Mol. Cell , vol.35 , pp. 519-525
    • Chung, K.S.1
  • 70
    • 79959470412 scopus 로고    scopus 로고
    • HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana
    • Crawford B.C., Yanofsky M.F. HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development 2011, 138:2999-3009.
    • (2011) Development , vol.138 , pp. 2999-3009
    • Crawford, B.C.1    Yanofsky, M.F.2
  • 71
    • 79952756874 scopus 로고    scopus 로고
    • CESTA, a positive regulator of brassinosteroid biosynthesis
    • Poppenberger B., et al. CESTA, a positive regulator of brassinosteroid biosynthesis. EMBO J. 2011, 30:1149-1161.
    • (2011) EMBO J. , vol.30 , pp. 1149-1161
    • Poppenberger, B.1
  • 72
    • 33745079253 scopus 로고    scopus 로고
    • Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner
    • Kuusk S., et al. Functionally redundant SHI family genes regulate Arabidopsis gynoecium development in a dose-dependent manner. Plant J. 2006, 47:99-111.
    • (2006) Plant J. , vol.47 , pp. 99-111
    • Kuusk, S.1
  • 73
    • 0036801063 scopus 로고    scopus 로고
    • STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development
    • Kuusk S., et al. STY1 and STY2 promote the formation of apical tissues during Arabidopsis gynoecium development. Development 2002, 129:4707-4717.
    • (2002) Development , vol.129 , pp. 4707-4717
    • Kuusk, S.1
  • 74
    • 67651111750 scopus 로고    scopus 로고
    • The NGATHA genes direct style development in the Arabidopsis gynoecium
    • Trigueros M., et al. The NGATHA genes direct style development in the Arabidopsis gynoecium. Plant Cell 2009, 21:1394-1409.
    • (2009) Plant Cell , vol.21 , pp. 1394-1409
    • Trigueros, M.1
  • 75
    • 67651095705 scopus 로고    scopus 로고
    • The NGATHA distal organ development genes are essential for style specification in Arabidopsis
    • Alvarez J.P., et al. The NGATHA distal organ development genes are essential for style specification in Arabidopsis. Plant Cell 2009, 21:1373-1393.
    • (2009) Plant Cell , vol.21 , pp. 1373-1393
    • Alvarez, J.P.1
  • 76
    • 82755161228 scopus 로고    scopus 로고
    • INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis
    • Girin T., et al. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. Plant Cell 2011, 23:3641-3653.
    • (2011) Plant Cell , vol.23 , pp. 3641-3653
    • Girin, T.1
  • 77
    • 1642634998 scopus 로고    scopus 로고
    • Control of fruit patterning in Arabidopsis by INDEHISCENT
    • Liljegren S.J., et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 2004, 116:843-853.
    • (2004) Cell , vol.116 , pp. 843-853
    • Liljegren, S.J.1
  • 78
    • 33745602479 scopus 로고    scopus 로고
    • Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis
    • Cheng Y., et al. Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev. 2006, 20:1790-1799.
    • (2006) Genes Dev. , vol.20 , pp. 1790-1799
    • Cheng, Y.1
  • 79
    • 41149143843 scopus 로고    scopus 로고
    • TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development
    • Stepanova A.N., et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 2008, 133:177-191.
    • (2008) Cell , vol.133 , pp. 177-191
    • Stepanova, A.N.1
  • 80
    • 0000927158 scopus 로고
    • Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation
    • Okada K., et al. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 1991, 3:677-684.
    • (1991) Plant Cell , vol.3 , pp. 677-684
    • Okada, K.1
  • 81
    • 0345167799 scopus 로고    scopus 로고
    • Local, efflux-dependent auxin gradients as a common module for plant organ formation
    • Benkova E., et al. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 2003, 115:591-602.
    • (2003) Cell , vol.115 , pp. 591-602
    • Benkova, E.1
  • 82
    • 0028878580 scopus 로고
    • Morphogenesis in pinoid mutants of Arabidopsis thaliana
    • Bennett S.R.M., et al. Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 1995, 8:505-520.
    • (1995) Plant J. , vol.8 , pp. 505-520
    • Bennett, S.R.M.1
  • 83
    • 7444265881 scopus 로고    scopus 로고
    • A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux
    • Friml J., et al. A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 2004, 306:862-865.
    • (2004) Science , vol.306 , pp. 862-865
    • Friml, J.1
  • 84
    • 0029008098 scopus 로고
    • Arabidopsis gynoecium structure in the wild and in ettin mutants
    • Sessions R.A., Zambryski P.C. Arabidopsis gynoecium structure in the wild and in ettin mutants. Development 1995, 121:1519-1532.
    • (1995) Development , vol.121 , pp. 1519-1532
    • Sessions, R.A.1    Zambryski, P.C.2
  • 85
    • 84870683131 scopus 로고    scopus 로고
    • Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses
    • Fuentes S., et al. Fruit growth in Arabidopsis occurs via DELLA-dependent and DELLA-independent gibberellin responses. Plant Cell 2012, 24:3982-3996.
    • (2012) Plant Cell , vol.24 , pp. 3982-3996
    • Fuentes, S.1
  • 86
    • 77950345640 scopus 로고    scopus 로고
    • The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis
    • Eklund D.M., et al. The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 2010, 22:349-363.
    • (2010) Plant Cell , vol.22 , pp. 349-363
    • Eklund, D.M.1
  • 87
    • 33745077058 scopus 로고    scopus 로고
    • STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium
    • Sohlberg J.J., et al. STY1 regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. Plant J. 2006, 47:112-123.
    • (2006) Plant J. , vol.47 , pp. 112-123
    • Sohlberg, J.J.1
  • 88
    • 79952751751 scopus 로고    scopus 로고
    • Model for the regulation of Arabidopsis thaliana leaf margin development
    • Bilsborough G.D., et al. Model for the regulation of Arabidopsis thaliana leaf margin development. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:3424-3429.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 3424-3429
    • Bilsborough, G.D.1
  • 89
    • 84877122133 scopus 로고    scopus 로고
    • The bHLH transcription factor SPATULA is a key regulator of organ size in Arabidopsis thaliana
    • Makkena S., Lamb R.S. The bHLH transcription factor SPATULA is a key regulator of organ size in Arabidopsis thaliana. Plant Signal. Behav. 2013, 8:e24140.
    • (2013) Plant Signal. Behav. , vol.8
    • Makkena, S.1    Lamb, R.S.2
  • 90
    • 24044485242 scopus 로고    scopus 로고
    • Arabidopsis KNOXI proteins activate cytokinin biosynthesis
    • Yanai O., et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol. 2005, 15:1566-1571.
    • (2005) Curr. Biol. , vol.15 , pp. 1566-1571
    • Yanai, O.1
  • 91
    • 80053564805 scopus 로고    scopus 로고
    • TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis
    • Kieffer M., et al. TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J. 2011, 68:147-158.
    • (2011) Plant J. , vol.68 , pp. 147-158
    • Kieffer, M.1
  • 92
    • 84857701849 scopus 로고    scopus 로고
    • The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers
    • Steiner E., et al. The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 2012, 24:96-108.
    • (2012) Plant Cell , vol.24 , pp. 96-108
    • Steiner, E.1
  • 93
    • 84871729280 scopus 로고    scopus 로고
    • Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3
    • Cheng Z.J., et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiol. 2013, 161:240-251.
    • (2013) Plant Physiol. , vol.161 , pp. 240-251
    • Cheng, Z.J.1
  • 94
    • 0033792717 scopus 로고    scopus 로고
    • Auxin and ETTIN in Arabidopsis gynoecium morphogenesis
    • Nemhauser J., et al. Auxin and ETTIN in Arabidopsis gynoecium morphogenesis. Development 2000, 127:3877-3888.
    • (2000) Development , vol.127 , pp. 3877-3888
    • Nemhauser, J.1
  • 95
    • 0035035187 scopus 로고    scopus 로고
    • SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein
    • Heisler M.G.B., et al. SPATULA, a gene that controls development of carpel margin tissues in Arabidopsis, encodes a bHLH protein. Development 2001, 128:1089-1098.
    • (2001) Development , vol.128 , pp. 1089-1098
    • Heisler, M.G.B.1
  • 96
    • 55649110533 scopus 로고    scopus 로고
    • Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium
    • Staldal V., et al. Auxin can act independently of CRC, LUG, SEU, SPT and STY1 in style development but not apical-basal patterning of the Arabidopsis gynoecium. New Phytol. 2008, 180:798-808.
    • (2008) New Phytol. , vol.180 , pp. 798-808
    • Staldal, V.1
  • 97
    • 84867578298 scopus 로고    scopus 로고
    • The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning
    • Marsch-Martinez N., et al. The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. Plant J. 2012, 72:222-234.
    • (2012) Plant J. , vol.72 , pp. 222-234
    • Marsch-Martinez, N.1
  • 98
    • 45749109424 scopus 로고    scopus 로고
    • Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis
    • Muller B., Sheen J. Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 2008, 453:1094-1097.
    • (2008) Nature , vol.453 , pp. 1094-1097
    • Muller, B.1    Sheen, J.2
  • 99
    • 84878306681 scopus 로고    scopus 로고
    • Auxin and the Arabidopsis thaliana gynoecium
    • Larsson E., et al. Auxin and the Arabidopsis thaliana gynoecium. J. Exp. Bot. 2013, 64:2619-2627.
    • (2013) J. Exp. Bot. , vol.64 , pp. 2619-2627
    • Larsson, E.1
  • 100
    • 29244489097 scopus 로고    scopus 로고
    • WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators
    • Leibfried A., et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 2005, 438:1172-1175.
    • (2005) Nature , vol.438 , pp. 1172-1175
    • Leibfried, A.1
  • 101
    • 84875066082 scopus 로고    scopus 로고
    • Crossing paths: cytokinin signalling and crosstalk
    • El-Showk S., et al. Crossing paths: cytokinin signalling and crosstalk. Development 2013, 140:1373-1383.
    • (2013) Development , vol.140 , pp. 1373-1383
    • El-Showk, S.1
  • 102
    • 62149093094 scopus 로고    scopus 로고
    • A regulated auxin minimum is required for seed dispersal in Arabidopsis
    • Sorefan K., et al. A regulated auxin minimum is required for seed dispersal in Arabidopsis. Nature 2009, 459:583-586.
    • (2009) Nature , vol.459 , pp. 583-586
    • Sorefan, K.1
  • 103
    • 79959961285 scopus 로고    scopus 로고
    • Stem cell activation by light guides plant organogenesis
    • Yoshida S., et al. Stem cell activation by light guides plant organogenesis. Genes Dev. 2011, 25:1439-1450.
    • (2011) Genes Dev. , vol.25 , pp. 1439-1450
    • Yoshida, S.1
  • 104
    • 84871331786 scopus 로고    scopus 로고
    • Hormones talking: does hormonal cross-talk shape the Arabidopsis gynoecium?
    • Marsch-Martinez N., et al. Hormones talking: does hormonal cross-talk shape the Arabidopsis gynoecium?. Plant Signal. Behav. 2012, 7:1698-1701.
    • (2012) Plant Signal. Behav. , vol.7 , pp. 1698-1701
    • Marsch-Martinez, N.1
  • 105
    • 84863945831 scopus 로고    scopus 로고
    • Cytokinin signaling networks
    • Hwang I., et al. Cytokinin signaling networks. Annu. Rev. Plant Biol. 2012, 63:353-380.
    • (2012) Annu. Rev. Plant Biol. , vol.63 , pp. 353-380
    • Hwang, I.1
  • 106
    • 84870782793 scopus 로고    scopus 로고
    • Gene regulation by cytokinin in Arabidopsis
    • Brenner W.G., et al. Gene regulation by cytokinin in Arabidopsis. Front. Plant Sci. 2012, 3:8.
    • (2012) Front. Plant Sci. , vol.3 , pp. 8
    • Brenner, W.G.1
  • 107
    • 84877069565 scopus 로고    scopus 로고
    • Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis
    • Bhargava A., et al. Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol. 2013, 162:272-294.
    • (2013) Plant Physiol. , vol.162 , pp. 272-294
    • Bhargava, A.1
  • 108
    • 77954269901 scopus 로고    scopus 로고
    • The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function
    • Warde-Farley D., et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38:W214-W220.
    • (2010) Nucleic Acids Res. , vol.38
    • Warde-Farley, D.1
  • 109
    • 0034143440 scopus 로고    scopus 로고
    • A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis
    • Gillissen B., et al. A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 2000, 12:291-300.
    • (2000) Plant Cell , vol.12 , pp. 291-300
    • Gillissen, B.1
  • 110
    • 57749088449 scopus 로고    scopus 로고
    • Characterization of cytokinin and adenine transport in Arabidopsis cell cultures
    • Cedzich A., et al. Characterization of cytokinin and adenine transport in Arabidopsis cell cultures. Plant Physiol. 2008, 148:1857-1867.
    • (2008) Plant Physiol. , vol.148 , pp. 1857-1867
    • Cedzich, A.1
  • 111
    • 0030844387 scopus 로고    scopus 로고
    • Gynoecium diversity and systematics of the Magnoliales and winteroids
    • Igersheim A., Endress P.K. Gynoecium diversity and systematics of the Magnoliales and winteroids. Bot. J. Linn. Soc. 1997, 124:213-271.
    • (1997) Bot. J. Linn. Soc. , vol.124 , pp. 213-271
    • Igersheim, A.1    Endress, P.K.2
  • 112
    • 0033708683 scopus 로고    scopus 로고
    • Gynoecium structure and evolution in basal angiosperms
    • Endress P.K., Anton I. Gynoecium structure and evolution in basal angiosperms. Int. J. Plant Sci. 2000, 161:S211-S213.
    • (2000) Int. J. Plant Sci. , vol.161
    • Endress, P.K.1    Anton, I.2
  • 113
    • 33750630407 scopus 로고    scopus 로고
    • Angiosperm floral evolution: morphological developmental framework
    • Academic Press
    • Endress P.K. Angiosperm floral evolution: morphological developmental framework. Advances in Botanical Research 2006, Vol. 44:1-61. Academic Press.
    • (2006) Advances in Botanical Research , vol.44 , pp. 1-61
    • Endress, P.K.1
  • 114
    • 79952764975 scopus 로고    scopus 로고
    • Evolutionary diversification of the flowers in angiosperms
    • Endress P.K. Evolutionary diversification of the flowers in angiosperms. Am. J. Bot. 2011, 98:370-396.
    • (2011) Am. J. Bot. , vol.98 , pp. 370-396
    • Endress, P.K.1
  • 115
    • 33846602240 scopus 로고    scopus 로고
    • Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers
    • Bateman R.M., et al. Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers. J. Exp. Bot. 2006, 57:3471-3503.
    • (2006) J. Exp. Bot. , vol.57 , pp. 3471-3503
    • Bateman, R.M.1
  • 116
    • 33747878583 scopus 로고    scopus 로고
    • An evolutionary perspective on the regulation of carpel development
    • Scutt C.P., et al. An evolutionary perspective on the regulation of carpel development. J. Exp. Bot. 2006, 57:2143-2152.
    • (2006) J. Exp. Bot. , vol.57 , pp. 2143-2152
    • Scutt, C.P.1
  • 117
    • 37549054097 scopus 로고    scopus 로고
    • After a dozen years of progress the origin of angiosperms is still a great mystery
    • Frohlich M.W., Chase M.W. After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 2007, 450:1184-1189.
    • (2007) Nature , vol.450 , pp. 1184-1189
    • Frohlich, M.W.1    Chase, M.W.2
  • 118
    • 60249097851 scopus 로고    scopus 로고
    • Reconstructing the ancestral angiosperm flower and its initial specializations
    • Endress P.K., Doyle J.A. Reconstructing the ancestral angiosperm flower and its initial specializations. Am. J. Bot. 2009, 96:22-66.
    • (2009) Am. J. Bot. , vol.96 , pp. 22-66
    • Endress, P.K.1    Doyle, J.A.2
  • 119
    • 0028133759 scopus 로고
    • Floral structure and evolution of primitive angiosperms: recent advances
    • Endress P. Floral structure and evolution of primitive angiosperms: recent advances. Plant Syst. Evol. 1994, 192:79-97.
    • (1994) Plant Syst. Evol. , vol.192 , pp. 79-97
    • Endress, P.1
  • 120
    • 58849142931 scopus 로고    scopus 로고
    • Comparative gynoecium structure and development in Calycanthaceae (Laurales)
    • 'Yannick M., et al. Comparative gynoecium structure and development in Calycanthaceae (Laurales). Int. J. Plant Sci. 2009, 170:21-41.
    • (2009) Int. J. Plant Sci. , vol.170 , pp. 21-41
    • 'Yannick, M.1
  • 121
    • 15444363834 scopus 로고    scopus 로고
    • Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms
    • Fourquin C., et al. Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:4649-4654.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 4649-4654
    • Fourquin, C.1
  • 122
    • 34548206355 scopus 로고    scopus 로고
    • Functional conservation between CRABS CLAW orthologues from widely diverged angiosperms
    • Fourquin C., et al. Functional conservation between CRABS CLAW orthologues from widely diverged angiosperms. Ann. Bot. 2007, 100:651-657.
    • (2007) Ann. Bot. , vol.100 , pp. 651-657
    • Fourquin, C.1
  • 123
    • 65949090511 scopus 로고    scopus 로고
    • Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower
    • Kaufmann K., et al. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol. 2009, 7:e1000090.
    • (2009) PLoS Biol. , vol.7
    • Kaufmann, K.1
  • 124
    • 84979819147 scopus 로고    scopus 로고
    • Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2
    • Yant L., et al. Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell 2010, 22:2156-2170.
    • (2010) Plant Cell , vol.22 , pp. 2156-2170
    • Yant, L.1
  • 125
    • 84866743105 scopus 로고    scopus 로고
    • Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses
    • Brandt R., et al. Genome-wide binding-site analysis of REVOLUTA reveals a link between leaf patterning and light-mediated growth responses. Plant J. 2012, 72:31-42.
    • (2012) Plant J. , vol.72 , pp. 31-42
    • Brandt, R.1
  • 126
    • 14044270789 scopus 로고    scopus 로고
    • Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis
    • Gómez-Mena C., et al. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 2005, 132:429-438.
    • (2005) Development , vol.132 , pp. 429-438
    • Gómez-Mena, C.1
  • 127
    • 84865335587 scopus 로고    scopus 로고
    • A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA
    • Reymond M.C., et al. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA. Plant Cell 2012, 24:2812-2825.
    • (2012) Plant Cell , vol.24 , pp. 2812-2825
    • Reymond, M.C.1
  • 128
    • 84862778624 scopus 로고    scopus 로고
    • The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering
    • Staldal V., et al. The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Mol. Biol. 2012, 78:545-559.
    • (2012) Plant Mol. Biol. , vol.78 , pp. 545-559
    • Staldal, V.1
  • 129
    • 79961177160 scopus 로고    scopus 로고
    • A mechanistic link between STM and CUC1 during Arabidopsis development
    • Spinelli S.V., et al. A mechanistic link between STM and CUC1 during Arabidopsis development. Plant Physiol. 2011, 156:1894-1904.
    • (2011) Plant Physiol. , vol.156 , pp. 1894-1904
    • Spinelli, S.V.1
  • 130
    • 84866788710 scopus 로고    scopus 로고
    • FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor
    • Bonaccorso O., et al. FILAMENTOUS FLOWER controls lateral organ development by acting as both an activator and a repressor. BMC Plant Biol. 2012, 12:176.
    • (2012) BMC Plant Biol. , vol.12 , pp. 176
    • Bonaccorso, O.1
  • 131
    • 23944492980 scopus 로고    scopus 로고
    • Comprehensive interaction map of the Arabidopsis MADS box transcription factors
    • de Folter S., et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 2005, 17:1424-1433.
    • (2005) Plant Cell , vol.17 , pp. 1424-1433
    • de Folter, S.1
  • 132
    • 0025465516 scopus 로고
    • Early flower development in Arabidopsis
    • Smyth D.R., et al. Early flower development in Arabidopsis. Plant Cell 1990, 2:755-767.
    • (1990) Plant Cell , vol.2 , pp. 755-767
    • Smyth, D.R.1
  • 133
    • 0025171150 scopus 로고
    • Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus
    • Carpenter R., Coen E.S. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev. 1990, 4:1483-1493.
    • (1990) Genes Dev. , vol.4 , pp. 1483-1493
    • Carpenter, R.1    Coen, E.S.2
  • 134
    • 0000560985 scopus 로고
    • Genetic control of flower development by homeotic genes in Antirrhinum majus
    • Schwarz-Sommer Z., et al. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 1990, 250:931-936.
    • (1990) Science , vol.250 , pp. 931-936
    • Schwarz-Sommer, Z.1
  • 135
    • 0026361853 scopus 로고
    • Genetic control of pattern formation during flower development in Arabidopsis
    • Bowman J.L., Meyerowitz E.M. Genetic control of pattern formation during flower development in Arabidopsis. Symp. Soc. Exp. Biol. 1991, 45:89-115.
    • (1991) Symp. Soc. Exp. Biol. , vol.45 , pp. 89-115
    • Bowman, J.L.1    Meyerowitz, E.M.2
  • 136
    • 84867867552 scopus 로고    scopus 로고
    • The ABC model of flower development: then and now
    • Bowman J.L., et al. The ABC model of flower development: then and now. Development 2012, 139:4095-4098.
    • (2012) Development , vol.139 , pp. 4095-4098
    • Bowman, J.L.1
  • 137
    • 0026417225 scopus 로고
    • The war of the whorls: genetic interactions controlling flower development
    • Coen E.S., Meyerowitz E.M. The war of the whorls: genetic interactions controlling flower development. Nature 1991, 353:31-37.
    • (1991) Nature , vol.353 , pp. 31-37
    • Coen, E.S.1    Meyerowitz, E.M.2
  • 138
    • 23944458558 scopus 로고    scopus 로고
    • Molecular mechanisms of flower development: an armchair guide
    • Krizek B.A., Fletcher J.C. Molecular mechanisms of flower development: an armchair guide. Nat. Rev. Genet. 2005, 6:688-698.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 688-698
    • Krizek, B.A.1    Fletcher, J.C.2
  • 139
    • 75849162560 scopus 로고    scopus 로고
    • Floral organ identity: 20 years of ABCs
    • Causier B., et al. Floral organ identity: 20 years of ABCs. Semin. Cell Dev. Biol. 2010, 21:73-79.
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 73-79
    • Causier, B.1
  • 140
    • 75849155011 scopus 로고    scopus 로고
    • The 'ABC' of MADS domain protein behaviour and interactions
    • Immink R.G., et al. The 'ABC' of MADS domain protein behaviour and interactions. Semin. Cell Dev. Biol. 2010, 21:87-93.
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 87-93
    • Immink, R.G.1
  • 141
    • 63449130930 scopus 로고    scopus 로고
    • SEPALLATA3: the 'glue' for MADS box transcription factor complex formation
    • Immink R.G., et al. SEPALLATA3: the 'glue' for MADS box transcription factor complex formation. Genome Biol. 2009, 10:R24.
    • (2009) Genome Biol. , vol.10
    • Immink, R.G.1
  • 142
    • 84887023681 scopus 로고    scopus 로고
    • The MADS symphonies of transcriptional regulation
    • Marsch-Martínez N., et al. The MADS symphonies of transcriptional regulation. Front. Plant Sci. 2011, 2:26.
    • (2011) Front. Plant Sci. , vol.2 , pp. 26
    • Marsch-Martínez, N.1
  • 143
    • 79751525328 scopus 로고    scopus 로고
    • MADS: the missing link between identity and growth?
    • Dornelas M.C., et al. MADS: the missing link between identity and growth?. Trends Plant Sci. 2011, 16:89-97.
    • (2011) Trends Plant Sci. , vol.16 , pp. 89-97
    • Dornelas, M.C.1
  • 144
    • 75849116362 scopus 로고    scopus 로고
    • Genes and functions controlled by floral organ identity genes
    • Sablowski R. Genes and functions controlled by floral organ identity genes. Semin. Cell Dev. Biol. 2010, 21:94-99.
    • (2010) Semin. Cell Dev. Biol. , vol.21 , pp. 94-99
    • Sablowski, R.1
  • 145
    • 84864818803 scopus 로고    scopus 로고
    • Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies
    • Smaczniak C., et al. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 2012, 139:3081-3098.
    • (2012) Development , vol.139 , pp. 3081-3098
    • Smaczniak, C.1
  • 146
    • 16244362244 scopus 로고    scopus 로고
    • A gene expression map of Arabidopsis thaliana development
    • Schmid M., et al. A gene expression map of Arabidopsis thaliana development. Nat. Genet. 2005, 37:501-506.
    • (2005) Nat. Genet. , vol.37 , pp. 501-506
    • Schmid, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.