메뉴 건너뛰기




Volumn 8, Issue , 2007, Pages 1393-1429

Learning to classify ordinal data: The data replication method

Author keywords

Classification; Neural networks; Ordinal data; Support vector machines

Indexed keywords

DATA REDUCTION; GENE EXPRESSION; LEARNING SYSTEMS; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 34547698831     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (163)

References (24)
  • 1
    • 21244476589 scopus 로고    scopus 로고
    • Supporting ordinal four-state classification decisions using neural networks
    • A. Agarwal, J. T. Davis, and T. Ward. Supporting ordinal four-state classification decisions using neural networks. In Information Technology and Management, pages 5-26, 2001.
    • (2001) Information Technology and Management , pp. 5-26
    • Agarwal, A.1    Davis, J.T.2    Ward, T.3
  • 2
    • 0002094343 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and other pattern classifiers
    • B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, MA
    • P. L. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines and other pattern classifiers. In B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 43-54. MIT Press, Cambridge, MA, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 43-54
    • Bartlett, P.L.1    Shawe-Taylor, J.2
  • 3
    • 27744456721 scopus 로고    scopus 로고
    • Modelling ordinal relations with SVMs: An application to objective aesthetic evaluation of breast cancer conservative treatment
    • june-july
    • J. S. Cardoso, J. F. Pinto da Costa, and M. J. Cardoso. Modelling ordinal relations with SVMs: an application to objective aesthetic evaluation of breast cancer conservative treatment. Neural Networks, 18:808-817, june-july 2005.
    • (2005) Neural Networks , vol.18 , pp. 808-817
    • Cardoso, J.S.1    Pinto da Costa, J.F.2    Cardoso, M.J.3
  • 6
    • 0030281175 scopus 로고    scopus 로고
    • Probabilistic interpretation of feedforward network outputs, with relationships to statistical prediction of ordinal quantities
    • M. Costa. Probabilistic interpretation of feedforward network outputs, with relationships to statistical prediction of ordinal quantities. International Journal Neural Systems, 7(5):627-638, 1996.
    • (1996) International Journal Neural Systems , vol.7 , Issue.5 , pp. 627-638
    • Costa, M.1
  • 9
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 10
    • 0006720075 scopus 로고    scopus 로고
    • Regression models for ordinal data: A machine learning approach
    • Technical Report TR-99/03, TU Berlin
    • R. Herbrich, T. Graepel, and K. Obermayer. Regression models for ordinal data: a machine learning approach. Technical Report TR-99/03, TU Berlin, 1999a.
    • (1999)
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 12
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • A. Smola B. Schölkopf, C. Burges, editor, MIT Press, Cambridge, MA
    • T. Joachims. Making large-scale support vector machine learning practical. In A. Smola B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge, MA, 1998.
    • (1998) Advances in Kernel Methods: Support Vector Machines
    • Joachims, T.1
  • 13
    • 0036161029 scopus 로고    scopus 로고
    • Support vector machines for classification in nonstandard situations
    • Y. Lin, Y. Lee, and G. Wahba. Support vector machines for classification in nonstandard situations. Machine Learning, 46:191-202, 2002.
    • (2002) Machine Learning , vol.46 , pp. 191-202
    • Lin, Y.1    Lee, Y.2    Wahba, G.3
  • 14
    • 70350394493 scopus 로고
    • Ordinal models for neural networks
    • A.-P.N Refenes, Y. Abu-Mostafa, and J. Moody, editors, World Scientific, Singapore
    • M. J. Mathieson. Ordinal models for neural networks. In A.-P.N Refenes, Y. Abu-Mostafa, and J. Moody, editors, Neural Networks for Financial Engineering. World Scientific, Singapore, 1995.
    • (1995) Neural Networks for Financial Engineering
    • Mathieson, M.J.1
  • 17
    • 0002787457 scopus 로고
    • Architecture selection strategies for neural networks: Application to corporate bond rating prediction
    • A.-P. Refenes, editor, Chichester, Wiley
    • J. Moody and J. Utans. Architecture selection strategies for neural networks: application to corporate bond rating prediction. In A.-P. Refenes, editor, Neural Networks in the Capital Markets, pages 277-300, Chichester, 1995. Wiley.
    • (1995) Neural Networks in the Capital Markets , pp. 277-300
    • Moody, J.1    Utans, J.2
  • 18
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods-Support Vector Learning, pages 185-208, 1998.
    • (1998) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 22
    • 24044511526 scopus 로고    scopus 로고
    • Ranking and reranking with perceptron
    • September
    • L. Shen and A. K. Joshi. Ranking and reranking with perceptron. Machine Learning, 60:73-96, September 2005.
    • (2005) Machine Learning , vol.60 , pp. 73-96
    • Shen, L.1    Joshi, A.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.